Math Problem Statement
Как перейти от неравенства треугольника вида |x-y|<=|x-z|+|z-y| к классическому неравенству треугольника для вещественных чисел вида |x+y|<=|x|+|y|
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Triangle Inequality
Absolute Value
Real Numbers
Formulas
|x - y| ≤ |x - z| + |z - y|
|x + y| ≤ |x| + |y|
Theorems
Triangle Inequality Theorem
Suitable Grade Level
Grades 10-12
Related Recommendation
Transition from Absolute Value Triangle Inequality to Classical Triangle Inequality
Proof of the Triangle Inequality: abs(a + b) <= abs(a) + abs(b)
Prove ||x| - |y|| ≤ |x - y| Without Using the Triangle Inequality
Proof of Triangle Inequality for Absolute Values
Understanding Absolute Value Inequalities: Can We Remove the Modulus?