Math Problem Statement

onstruct a truth table for the given statement. Identify whether the statement is a tautology. left bracket left parenthesis p logical or q right parenthesis logical and tilde r right bracket right arrow p Question content area bottom Part 1 Complete the truth table below. p q r left bracket left parenthesis p logical or q right parenthesis logical and tilde r right bracket right arrow p T T T ▼ F T T T F ▼ F T

Solution

To construct a truth table for the statement ((pq)¬r)p( (p \lor q) \land \neg r ) \rightarrow p, we’ll go through each possible combination of truth values for pp, qq, and rr and determine the value of the entire expression.

Steps to complete the truth table:

  1. Determine all possible combinations of truth values for pp, qq, and rr.
  2. Calculate pqp \lor q for each combination.
  3. Calculate ¬r\neg r for each combination.
  4. Calculate (pq)¬r(p \lor q) \land \neg r.
  5. Evaluate ((pq)¬r)p( (p \lor q) \land \neg r ) \rightarrow p.

The truth table structure will look like this:

ppqqrrpqp \lor q¬r\neg r(pq)¬r(p \lor q) \land \neg r((pq)¬r)p((p \lor q) \land \neg r) \rightarrow p
TTTTFFT
TTFTTTT
TFTTFFT
TFFTTTT
FTTTFFT
FTFTTTF
FFTFFFT
FFFFTFT

Determining if the Statement is a Tautology

For a statement to be a tautology, the final column should contain only true (T) values. Here, the final column has a single false (F) outcome in row 6, meaning the statement is not a tautology.

Would you like me to explain any specific steps in this table?

Here are five questions for further exploration:

  1. How does negation impact the truth values of a statement?
  2. What makes a logical statement a tautology?
  3. How would the truth table change if we replaced \lor (or) with \land (and)?
  4. What is the significance of the conditional statement (\rightarrow) in logic?
  5. Can we create a truth table for other logical statements like biconditionals (\leftrightarrow)?

Tip: Practice constructing truth tables to get familiar with identifying tautologies and contradictions efficiently.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logic
Truth Tables
Propositional Logic
Tautologies
Logical Connectives

Formulas

(p ∨ q)
¬r
(p ∨ q) ∧ ¬r
((p ∨ q) ∧ ¬r) → p

Theorems

Tautology
Implication (→) Truth Table

Suitable Grade Level

Grades 10-12