Math Problem Statement

Complete the truth table for the logical expression (p → q) ∨ (r → p).

Solution

This is a truth table for the logical expression (pq)(rp)(p \rightarrow q) \lor (r \rightarrow p), where pp, qq, and rr are propositions, and \rightarrow stands for logical implication, and \lor for logical disjunction (OR).

Let's break down the steps to fill in the table:

Logical Operations:

  1. Implication (pqp \rightarrow q):

    • True unless pp is true and qq is false.
  2. Implication (rpr \rightarrow p):

    • True unless rr is true and pp is false.
  3. Disjunction (ABA \lor B):

    • True if either AA or BB is true, or both.

Let's evaluate each row:

Row 1: p=Vp = V, q=Vq = V, r=Vr = V

  • pq=Vp \rightarrow q = V
  • rp=Vr \rightarrow p = V
  • (pq)(rp)=V(p \rightarrow q) \lor (r \rightarrow p) = V

Row 2: p=Vp = V, q=Vq = V, r=Fr = F

  • pq=Vp \rightarrow q = V
  • rp=Vr \rightarrow p = V
  • (pq)(rp)=V(p \rightarrow q) \lor (r \rightarrow p) = V

Row 3: p=Vp = V, q=Fq = F, r=Vr = V

  • pq=Fp \rightarrow q = F
  • (r \rightarrow p =

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Truth Tables

Formulas

p → q
r → p
(p → q) ∨ (r → p)

Theorems

Logical Implication
Logical Disjunction

Suitable Grade Level

Grades 10-12