Math Problem Statement

Make a truth table

Make a truth table

Solution

The image presents a logical expression and a partially constructed truth table. Let's first break down the columns and symbols:

  • pp, qq, and rr are the three propositions (boolean variables).
  • pqp \to q is a conditional statement ("if pp then qq").
  • rqr \land q represents the logical conjunction ("rr AND qq").
  • (pr)(rq)(p \to r) \land (r \land q) combines the conditional prp \to r with rqr \land q using AND.
  • [(pr)(rq)]p[(p \to r) \land (r \land q)] \to p is the final column, representing the implication of the full expression.

Now, I'll create a complete truth table for this setup, where pp, qq, and rr take all possible truth values (True = T, False = F).

I'll display the full table below with all logical operations.Here is the complete truth table for the logical expression [(pr)(rq)]p[(p \to r) \land (r \land q)] \to p:

\hline p & q & r & p \to q & r \land q & (p \to r) \land (r \land q) & [(p \to r) \land (r \land q)] \to p \\ \hline \text{True} & \text{True} & \text{True} & \text{True} & \text{True} & \text{True} & \text{True} \\ \text{True} & \text{True} & \text{False} & \text{True} & \text{False} & \text{False} & \text{True} \\ \text{True} & \text{False} & \text{True} & \text{False} & \text{False} & \text{False} & \text{True} \\ \text{True} & \text{False} & \text{False} & \text{False} & \text{False} & \text{False} & \text{True} \\ \text{False} & \text{True} & \text{True} & \text{True} & \text{True} & \text{True} & \text{False} \\ \text{False} & \text{True} & \text{False} & \text{True} & \text{False} & \text{False} & \text{True} \\ \text{False} & \text{False} & \text{True} & \text{True} & \text{False} & \text{False} & \text{True} \\ \text{False} & \text{False} & \text{False} & \text{True} & \text{False} & \text{False} & \text{True} \\ \hline \end{array}$$ Would you like more details on any specific step of the truth table construction? Here are some related questions: 1. What is the difference between conjunction ($$\land$$) and implication ($$\to$$)? 2. How is the truth value of $$p \to q$$ determined for different inputs? 3. Why does the final expression only evaluate to False in one row? 4. How do De Morgan's laws apply to logical expressions like this? 5. What would change if we added a negation to the entire formula? **Tip**: In a truth table, $$p \to q$$ is only false when $$p$$ is true and $$q$$ is false.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logic
Truth Tables
Propositional Logic

Formulas

p → q (If p then q)
r ∧ q (r AND q)
(p → r) ∧ (r ∧ q) (Logical conjunction)
[(p → r) ∧ (r ∧ q)] → p (Implication)

Theorems

Truth Table Construction
Implication and Conjunction in Propositional Logic

Suitable Grade Level

Grades 10-12 or Introductory College Logic