Math Problem Statement

Construct the truth tables for the following formulas: (a) (PQ) (b) P(QP) (c) (P(PQ)Q) (d) (PQ)(PQ)

Solution

Let's break down each formula and construct the corresponding truth tables step by step.

(a) ¬(¬P¬Q)\neg(\neg P \lor \neg Q)

We will construct the truth table for the negation of the disjunction of ¬P\neg P and ¬Q\neg Q.

PPQQ¬P\neg P¬Q\neg Q¬P¬Q\neg P \lor \neg Q¬(¬P¬Q)\neg(\neg P \lor \neg Q)
TTFFFT
TFFTTF
FTTFTF
FFTTTF

(b) P(QP)P \land (Q \land P)

This is the conjunction of PP and the conjunction of QQ and PP.

PPQQQPQ \land PP(QP)P \land (Q \land P)
TTTT
TFFF
FTFF
FFFF

(c) (P(PQ))Q(P \land (P \to Q)) \to Q

We need to evaluate the truth values of P(PQ)P \land (P \to Q), then see the truth value for (P(PQ))Q(P \land (P \to Q)) \to Q.

PPQQPQP \to QP(PQ)P \land (P \to Q)(P(PQ))Q(P \land (P \to Q)) \to Q
TTTTT
TFFFT
FTTFT
FFTFT

(d) (PQ)(¬PQ)(P \to Q) \leftrightarrow (\neg P \lor Q)

This formula checks the biconditional (↔) of PQP \to Q and ¬PQ\neg P \lor Q.

PPQQ¬P\neg PPQP \to Q¬PQ\neg P \lor Q(PQ)(¬PQ)(P \to Q) \leftrightarrow (\neg P \lor Q)
TTFTTT
TFFFFT
FTTTTT
FFTTTT

Do you need further details or explanations on any of the truth tables?

Related questions:

  1. How is a biconditional operator \leftrightarrow evaluated in a truth table?
  2. What is the significance of negation in logical expressions?
  3. Why do logical conjunctions (\land) return false when any operand is false?
  4. How does the conditional (\to) behave differently from biconditional (\leftrightarrow)?
  5. Can disjunction (\lor) ever return false when at least one operand is true?

Tip:

When constructing truth tables, always start by evaluating the simplest components (negation, conjunction, etc.) and build the more complex expressions step by step.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Truth Tables
Logical Connectives

Formulas

(PQ)
P(QP)
(P(PQ)Q)
(PQ)(PQ)

Theorems

De Morgan's Law
Conjunction (AND)
Implication (→)
Biconditional (↔)
Negation (¬)
Disjunction (OR)

Suitable Grade Level

Undergraduate - Introductory Logic or Discrete Mathematics