Math Problem Statement

Construct the truth table of the compound proposition ( ) ( ). p q p q ∨ ¬ → ∧

Solution

The compound proposition you provided is a bit unclear due to formatting, but I understand it as:

(p¬q)(pq)(p \lor \neg q) \rightarrow (p \land q)

We need to construct the truth table for this expression. Let's break it down step by step.

Components:

  1. pp: Proposition pp.
  2. qq: Proposition qq.
  3. ¬q\neg q: The negation of qq.
  4. p¬qp \lor \neg q: pp OR ¬q\neg q.
  5. pqp \land q: pp AND qq.
  6. (p¬q)(pq)(p \lor \neg q) \rightarrow (p \land q): The implication from p¬qp \lor \neg q to pqp \land q.

Truth Table Construction:

Let's construct the truth table by considering all possible truth values for pp and qq.

ppqq¬q\neg qp¬qp \lor \neg qpqp \land q(p¬q)(pq)(p \lor \neg q) \rightarrow (p \land q)
TTFTTT
TFTTFF
FTFFFT
FFTTFF

Explanation:

  1. First Row:

    • p=Tp = T, q=Tq = T
    • ¬q=F\neg q = F
    • p¬q=TF=Tp \lor \neg q = T \lor F = T
    • pq=TT=Tp \land q = T \land T = T
    • (p¬q)(pq)=TT=T(p \lor \neg q) \rightarrow (p \land q) = T \rightarrow T = T
  2. Second Row:

    • p=Tp = T, q=Fq = F
    • ¬q=T\neg q = T
    • p¬q=TT=Tp \lor \neg q = T \lor T = T
    • pq=TF=Fp \land q = T \land F = F
    • (p¬q)(pq)=TF=F(p \lor \neg q) \rightarrow (p \land q) = T \rightarrow F = F
  3. Third Row:

    • p=Fp = F, q=Tq = T
    • ¬q=F\neg q = F
    • p¬q=FF=Fp \lor \neg q = F \lor F = F
    • pq=FT=Fp \land q = F \land T = F
    • (p¬q)(pq)=FF=T(p \lor \neg q) \rightarrow (p \land q) = F \rightarrow F = T
  4. Fourth Row:

    • p=Fp = F, q=Fq = F
    • ¬q=T\neg q = T
    • p¬q=FT=Tp \lor \neg q = F \lor T = T
    • pq=FF=Fp \land q = F \land F = F
    • (p¬q)(pq)=TF=F(p \lor \neg q) \rightarrow (p \land q) = T \rightarrow F = F

Final Truth Table:

\hline p & q & \neg q & p \lor \neg q & p \land q & (p \lor \neg q) \rightarrow (p \land q) \\ \hline T & T & F & T & T & T \\ T & F & T & T & F & F \\ F & T & F & F & F & T \\ F & F & T & T & F & F \\ \hline \end{array}$$ Would you like any more details or have any questions? --- Here are 5 questions related to this topic: 1. What is the difference between conjunction ($$\land$$) and disjunction ($$\lor$$) in logic? 2. How does the truth value of an implication ($$\rightarrow$$) change based on its premises? 3. Can you create a truth table for $$p \rightarrow (q \lor r)$$? 4. What is the role of negation ($$\neg$$) in logical statements? 5. How does the truth table change if we reverse the implication, i.e., $$(p \land q) \rightarrow (p \lor \neg q)$$? **Tip:** In logic, an implication ($$\rightarrow$$) is false only when the first part (antecedent) is true, and the second part (consequent) is false.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic

Formulas

Truth table construction

Theorems

-

Suitable Grade Level

Advanced High School