Math Problem Statement

onstruct a truth table for the statement. left parenthesis tilde p logical or tilde r right parenthesis left right arrow left parenthesis tilde r logical or q right parenthesis Question content area bottom Part 1 Construct a truth table for the statement. Fill in the blanks below. p q r ​(tilde p logical or tilde r​) left right arrow ​(tilde r logical or q​) T T T ▼ T F ▼ F T Upper F ▼ T F Upper F

Solution

To construct a truth table for the given statement (pr)(rq)\left(\sim p \lor \sim r \right) \leftrightarrow \left(\sim r \lor q \right), we will create a table with all possible combinations of truth values for pp, qq, and rr. Then, we will compute the values of the sub-expressions step by step, which includes negating variables and evaluating the logical disjunction (OR, \lor) and biconditional (\leftrightarrow) operations.

Key Symbols:

  • p\sim p: Negation of pp
  • \lor: Logical OR
  • \leftrightarrow: Biconditional ("if and only if")

Step-by-step process:

  1. Column 1-3: Assign all possible truth values for pp, qq, and rr.
  2. Column 4: Compute p\sim p and r\sim r, then find the value of pr\sim p \lor \sim r.
  3. Column 5: Compute r\sim r, then find the value of rq\sim r \lor q.
  4. Column 6: Evaluate the biconditional (pr)(rq)\left(\sim p \lor \sim r\right) \leftrightarrow \left(\sim r \lor q\right).

Let's build the truth table step-by-step.

ppqqrrpr\sim p \lor \sim rrq\sim r \lor q(pr)(rq)\left(\sim p \lor \sim r\right) \leftrightarrow \left(\sim r \lor q\right)
TTTFTF
TTFTTT
TFTFFT
TFFTFF
FTTTTT
FTFTTT
FFTTFF
FFFTFF

Explanation:

  • pp, qq, and rr: The first three columns list all possible combinations of truth values for pp, qq, and rr (T = true, F = false).
  • pr\sim p \lor \sim r: This column shows the result of the disjunction (OR) between the negation of pp and the negation of rr.
  • rq\sim r \lor q: This column shows the result of the disjunction (OR) between the negation of rr and qq.
  • (pr)(rq)\left(\sim p \lor \sim r\right) \leftrightarrow \left(\sim r \lor q\right): The biconditional checks if the two sub-expressions have the same truth value. If they do, the result is T (True); otherwise, it is F (False).

Let me know if you'd like more details or explanations!

5 Related Questions:

  1. What does the symbol \leftrightarrow mean in logical expressions?
  2. How do you compute the negation (\sim) of a truth value?
  3. What is the difference between logical OR (\lor) and logical AND (\land)?
  4. How can you verify if two logical expressions are logically equivalent?
  5. How does the truth table change if we modify one of the sub-expressions?

Tip:

Always break down complex logical expressions into smaller components when constructing truth tables!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logic
Truth Tables
Logical Operations

Formulas

Negation (~p)
Logical OR (p ∨ q)
Biconditional (p ↔ q)

Theorems

Biconditional Truth Table
Logical Equivalence

Suitable Grade Level

Grades 9-12