Math Problem Statement

Let σ be a portion of the sphere x^2 + y^2 + z^2 = 1 above the plane z = 1/2. Compute ∬_σ x^2z dS. (Note: Use the standard parameterization of the sphere x^2 + y^2 + z^2 = a^2, with a = 1).

Solution

To compute the surface integral:

σx2zdS\iint_\sigma x^2 z \, dS

for the given portion of the sphere x2+y2+z2=1x^2 + y^2 + z^2 = 1 above the plane z=12z = \frac{1}{2}, we proceed as follows:


Step 1: Parameterization of the sphere

The standard parameterization of the sphere x2+y2+z2=1x^2 + y^2 + z^2 = 1 is: x=sinϕcosθ,y=sinϕsinθ,z=cosϕ,x = \sin\phi \cos\theta, \quad y = \sin\phi \sin\theta, \quad z = \cos\phi, where:

  • ϕ\phi is the polar angle (0ϕπ0 \leq \phi \leq \pi),
  • θ\theta is the azimuthal angle (0θ<2π0 \leq \theta < 2\pi).

For the region above the plane z=12z = \frac{1}{2}, we restrict ϕ\phi such that cosϕ12\cos\phi \geq \frac{1}{2}, or equivalently: ϕ[0,arccos12].\phi \in [0, \arccos\frac{1}{2}].


Step 2: Surface area element

The surface area element dSdS for the sphere is given by: dS=rϕ×rθdϕdθ,dS = \|\vec{r}_\phi \times \vec{r}_\theta\| \, d\phi \, d\theta, where rϕ\vec{r}_\phi and rθ\vec{r}_\theta are partial derivatives of the position vector r(ϕ,θ)=(sinϕcosθ,sinϕsinθ,cosϕ)\vec{r}(\phi, \theta) = (\sin\phi \cos\theta, \sin\phi \sin\theta, \cos\phi).

The magnitude of the cross product is: rϕ×rθ=sinϕ.\|\vec{r}_\phi \times \vec{r}_\theta\| = \sin\phi. Thus: dS=sinϕdϕdθ.dS = \sin\phi \, d\phi \, d\theta.


Step 3: Expressing the integrand

The integrand x2zx^2 z becomes: x2z=(sinϕcosθ)2cosϕ.x^2 z = (\sin\phi \cos\theta)^2 \cos\phi.

Substituting everything into the integral: σx2zdS=02π0arccos12(sinϕcosθ)2cosϕsinϕdϕdθ.\iint_\sigma x^2 z \, dS = \int_0^{2\pi} \int_0^{\arccos\frac{1}{2}} (\sin\phi \cos\theta)^2 \cos\phi \sin\phi \, d\phi \, d\theta.


Step 4: Simplify and evaluate

  1. Factorize terms involving θ\theta and ϕ\phi: 02πcos2θdθand0arccos12sin2ϕcosϕsinϕdϕ.\int_0^{2\pi} \cos^2\theta \, d\theta \quad \text{and} \quad \int_0^{\arccos\frac{1}{2}} \sin^2\phi \cos\phi \sin\phi \, d\phi.

  2. Solve 02πcos2θdθ\int_0^{2\pi} \cos^2\theta \, d\theta using the identity cos2θ=1+cos2θ2\cos^2\theta = \frac{1 + \cos2\theta}{2}: 02πcos2θdθ=π.\int_0^{2\pi} \cos^2\theta \, d\theta = \pi.

  3. Rewrite 0arccos12sin2ϕcosϕsinϕdϕ\int_0^{\arccos\frac{1}{2}} \sin^2\phi \cos\phi \sin\phi \, d\phi as: 0arccos12sin3ϕcosϕdϕ.\int_0^{\arccos\frac{1}{2}} \sin^3\phi \cos\phi \, d\phi.

    Use the substitution u=sinϕu = \sin\phi, du=cosϕdϕdu = \cos\phi \, d\phi, with limits u=0u = 0 to u=3/2u = \sqrt{3}/2 (since sinϕ=1cos2ϕ\sin\phi = \sqrt{1 - \cos^2\phi} and cosϕ=12\cos\phi = \frac{1}{2}): 0arccos12sin3ϕcosϕdϕ=03/2u3du=[u44]03/2=(3/2)44=364.\int_0^{\arccos\frac{1}{2}} \sin^3\phi \cos\phi \, d\phi = \int_0^{\sqrt{3}/2} u^3 \, du = \left[\frac{u^4}{4}\right]_0^{\sqrt{3}/2} = \frac{(\sqrt{3}/2)^4}{4} = \frac{3}{64}.

  4. Combine results: σx2zdS=π364=3π64.\iint_\sigma x^2 z \, dS = \pi \cdot \frac{3}{64} = \frac{3\pi}{64}.


Final Answer

3π64\boxed{\frac{3\pi}{64}}

Let me know if you'd like additional clarification or have more questions!


Related Questions

  1. How is the parameterization derived for different surfaces?
  2. Why is the surface area element dSdS dependent on the cross product?
  3. What happens if the integration limits for zz are extended to the entire sphere?
  4. Can this integral be computed in cylindrical or spherical coordinates directly?
  5. What other methods exist to solve such surface integrals?

Tip: Always ensure your parameterization is consistent with the given surface and integration bounds!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Surface integrals
Parametric surfaces
Spherical coordinates
Multivariable calculus

Formulas

Sphere parameterization: x = sin(φ)cos(θ), y = sin(φ)sin(θ), z = cos(φ)
Surface area element: dS = ||r_φ × r_θ|| dφ dθ = sin(φ) dφ dθ
Cosine identity: cos²(θ) = (1 + cos(2θ))/2

Theorems

Surface integral definition for parametric surfaces
Integration techniques in polar coordinates

Suitable Grade Level

College-level (Multivariable Calculus)