Math Problem Statement

Let σ be a portion of the sphere x² + y² + z² = 1 above the plane z = 1/2. Compute the surface integral ∫∫_σ x²z dS.

Solution

The problem involves calculating the surface integral σx2zdS\iint_\sigma x^2 z \, dS over the portion of the sphere x2+y2+z2=1x^2 + y^2 + z^2 = 1 that lies above the plane z=12z = \frac{1}{2}. Here is the solution:


Step 1: Parametrize the sphere

The sphere x2+y2+z2=1x^2 + y^2 + z^2 = 1 can be parametrized using spherical coordinates: x=sinϕcosθ,y=sinϕsinθ,z=cosϕ,x = \sin\phi \cos\theta, \quad y = \sin\phi \sin\theta, \quad z = \cos\phi, where:

  • 0θ2π0 \leq \theta \leq 2\pi,
  • 0ϕπ0 \leq \phi \leq \pi.

Step 2: Restrict to the upper portion of the sphere

The condition z=cosϕ12z = \cos\phi \geq \frac{1}{2} restricts ϕ\phi to: cosϕ12    ϕcos1(12).\cos\phi \geq \frac{1}{2} \implies \phi \leq \cos^{-1}\left(\frac{1}{2}\right). Thus, ϕ[0,π/3]\phi \in [0, \pi/3] (since cos1(1/2)=π/3\cos^{-1}(1/2) = \pi/3).


Step 3: Compute the differential surface area dSdS

For a sphere of radius a=1a = 1, the surface element is: dS=rϕ×rθdϕdθ=sinϕdϕdθ.dS = \|\mathbf{r}_\phi \times \mathbf{r}_\theta\| \, d\phi \, d\theta = \sin\phi \, d\phi \, d\theta.


Step 4: Express the integrand in terms of ϕ\phi and θ\theta

The integrand x2zx^2 z becomes: x2z=(sin2ϕcos2θ)(cosϕ).x^2 z = (\sin^2\phi \cos^2\theta)(\cos\phi).

Thus, the surface integral is: σx2zdS=02π0π/3(sin2ϕcos2θ)(cosϕ)(sinϕ)dϕdθ.\iint_\sigma x^2 z \, dS = \int_0^{2\pi} \int_0^{\pi/3} (\sin^2\phi \cos^2\theta)(\cos\phi)(\sin\phi) \, d\phi \, d\theta.


Step 5: Simplify the integral

Separate the integral into ϕ\phi- and θ\theta-dependent parts: σx2zdS=02πcos2θdθ0π/3sin2ϕcosϕsinϕdϕ.\iint_\sigma x^2 z \, dS = \int_0^{2\pi} \cos^2\theta \, d\theta \cdot \int_0^{\pi/3} \sin^2\phi \cos\phi \sin\phi \, d\phi.

θ\theta-integral:

02πcos2θdθ=π.\int_0^{2\pi} \cos^2\theta \, d\theta = \pi.

ϕ\phi-integral:

Simplify sin2ϕcosϕsinϕ=sin3ϕcosϕ\sin^2\phi \cos\phi \sin\phi = \sin^3\phi \cos\phi: 0π/3sin3ϕcosϕdϕ.\int_0^{\pi/3} \sin^3\phi \cos\phi \, d\phi. Use the substitution u=sinϕu = \sin\phi, du=cosϕdϕdu = \cos\phi \, d\phi: 0π/3sin3ϕcosϕdϕ=0sin(π/3)u3du=03/2u3du.\int_0^{\pi/3} \sin^3\phi \cos\phi \, d\phi = \int_0^{\sin(\pi/3)} u^3 \, du = \int_0^{\sqrt{3}/2} u^3 \, du. Evaluate: 03/2u3du=[u44]03/2=14(334)=3316.\int_0^{\sqrt{3}/2} u^3 \, du = \left[\frac{u^4}{4}\right]_0^{\sqrt{3}/2} = \frac{1}{4}\left(\frac{3\sqrt{3}}{4}\right) = \frac{3\sqrt{3}}{16}.


Step 6: Combine the results

Multiply the results of the two integrals: σx2zdS=π3316=3π316.\iint_\sigma x^2 z \, dS = \pi \cdot \frac{3\sqrt{3}}{16} = \frac{3\pi\sqrt{3}}{16}.


Final Answer:

3π316\boxed{\frac{3\pi\sqrt{3}}{16}}

Would you like a more detailed explanation or help with similar problems?


Relative Questions:

  1. How can we compute surface integrals for general functions over a sphere?
  2. What are common parametrizations for spheres in various coordinate systems?
  3. How does the restriction z>12z > \frac{1}{2} affect the integration bounds?
  4. What substitution techniques simplify trigonometric integrals?
  5. Can we use symmetry to simplify integrals on symmetric domains?

Tip:

Always verify the domain of integration carefully, especially when applying bounds like z>12z > \frac{1}{2}, as this directly affects the parametrization limits.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Surface Integrals
Spherical Coordinates
Parametrization of Surfaces

Formulas

Parametrization of a sphere: x = sin(φ)cos(θ), y = sin(φ)sin(θ), z = cos(φ)
Surface element: dS = |r_φ × r_θ| dφ dθ = sin(φ) dφ dθ
Integral bounds for θ: [0, 2π]
Integral bounds for φ: [0, π/3] (restricted by z ≥ 1/2)

Theorems

Spherical coordinate parametrization for surfaces

Suitable Grade Level

College-level Calculus (Multivariable Calculus)