Math Problem Statement

Consider the solid Ω bounded from below by the cone z = sqrt(x^2 + y^2) and bounded from above by the plane z = 4. Let σ be the boundary surface of Ω. Compute ∬_σ z y^2 dS.

Solution

To compute the given integral σzy2dS\iint_{\sigma} z y^2 \, dS, we split the surface σ\sigma into two parts, σ1\sigma_1 (the cone) and σ2\sigma_2 (the circular lid at z=4z = 4), and calculate their contributions separately using polar coordinates. Here's the process:


Step 1: Surface Parameterization and Projections

1. Cone (σ1\sigma_1):

The equation of the cone is: z=x2+y2z = \sqrt{x^2 + y^2} Using polar coordinates, we substitute: x=rcosθ,y=rsinθ,z=rx = r\cos\theta, \quad y = r\sin\theta, \quad z = r The projection onto the xyxy-plane is a circle of radius 4 since z=4z = 4 at the top: [ r \in [0, 4], \quad \theta \in [0, 2\pi] ]

The normal vector magnitude for σ1\sigma_1 involves the gradient: n=Φ=(x,y,x2+y2),n=1+(zx)2+(zy)2=2.\vec{n} = \nabla \Phi = \left(-x, -y, \sqrt{x^2 + y^2}\right), \quad |\vec{n}| = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \sqrt{2}.

So, dS1=2rdrdθdS_1 = \sqrt{2} \, r \, dr \, d\theta.

The integrand becomes: zy2=r(r2sin2θ)=r3sin2θ.z y^2 = r (r^2 \sin^2\theta) = r^3 \sin^2\theta.

The integral over σ1\sigma_1 is: σ1zy2dS=02π04r3sin2θ2rdrdθ.\int_{\sigma_1} z y^2 \, dS = \int_0^{2\pi} \int_0^4 r^3 \sin^2\theta \sqrt{2} \, r \, dr \, d\theta.

2. Circular Lid (σ2\sigma_2):

At z=4z = 4, the circular lid is flat, so: z=4,x=rcosθ,y=rsinθ.z = 4, \quad x = r\cos\theta, \quad y = r\sin\theta.

The surface element is: dS2=rdrdθ.dS_2 = r \, dr \, d\theta.

The integrand becomes: zy2=4(r2sin2θ)=4r2sin2θ.z y^2 = 4 (r^2 \sin^2\theta) = 4r^2 \sin^2\theta.

The integral over σ2\sigma_2 is: σ2zy2dS=02π044r2sin2θrdrdθ.\int_{\sigma_2} z y^2 \, dS = \int_0^{2\pi} \int_0^4 4r^2 \sin^2\theta \, r \, dr \, d\theta.


Step 2: Evaluate Each Integral

1. Evaluate σ1\sigma_1:

σ1zy2dS=202π04r4sin2θdrdθ.\int_{\sigma_1} z y^2 \, dS = \sqrt{2} \int_0^{2\pi} \int_0^4 r^4 \sin^2\theta \, dr \, d\theta.

Split the integral: 02πsin2θdθ=02π1cos(2θ)2dθ=π.\int_0^{2\pi} \sin^2\theta \, d\theta = \int_0^{2\pi} \frac{1 - \cos(2\theta)}{2} \, d\theta = \pi.

04r4dr=[r55]04=10245.\int_0^4 r^4 \, dr = \left[\frac{r^5}{5}\right]_0^4 = \frac{1024}{5}.

So: σ1zy2dS=2π10245=1024π25.\int_{\sigma_1} z y^2 \, dS = \sqrt{2} \cdot \pi \cdot \frac{1024}{5} = \frac{1024\pi\sqrt{2}}{5}.

2. Evaluate σ2\sigma_2:

σ2zy2dS=402π04r3sin2θdrdθ.\int_{\sigma_2} z y^2 \, dS = 4 \int_0^{2\pi} \int_0^4 r^3 \sin^2\theta \, dr \, d\theta.

As before: 02πsin2θdθ=π,\int_0^{2\pi} \sin^2\theta \, d\theta = \pi, 04r3dr=[r44]04=64.\int_0^4 r^3 \, dr = \left[\frac{r^4}{4}\right]_0^4 = 64.

So: σ2zy2dS=4π64=256π.\int_{\sigma_2} z y^2 \, dS = 4 \cdot \pi \cdot 64 = 256\pi.


Step 3: Combine Results

σzy2dS=σ1zy2dS+σ2zy2dS=1024π25+256π.\int_{\sigma} z y^2 \, dS = \int_{\sigma_1} z y^2 \, dS + \int_{\sigma_2} z y^2 \, dS = \frac{1024\pi\sqrt{2}}{5} + 256\pi.


Would you like further simplifications or clarifications on any step?

5 Relative Questions:

  1. How does the gradient of the cone contribute to the surface element calculation?
  2. Why is sin2θ\sin^2\theta replaced using trigonometric identities during integration?
  3. Can this integral be evaluated in Cartesian coordinates, and how would it differ?
  4. What are some practical applications of these surface integrals?
  5. How does the symmetry of the problem simplify the integration?

Tip:

Using symmetry in such problems often reduces the computational effort, especially for angular terms like sin2θ\sin^2\theta or cos2θ\cos^2\theta.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Surface integrals
Polar coordinates
Vector calculus
Projection onto the xy-plane

Formulas

z = sqrt(x^2 + y^2)
x = r cos(θ), y = r sin(θ), z = r
sin^2(θ) = (1 - cos(2θ)) / 2
Surface element dS = |∇Φ| dA

Theorems

Surface integral calculation via parameterization
Use of trigonometric identities for integration simplification

Suitable Grade Level

College Level (Calculus III or Multivariable Calculus)