Math Problem Statement

Let σ be a portion of the sphere x² + y² + z² = 1 above the plane z = 1/2. Compute the integral ∫∫σ x²z dS.

Solution

To compute the given surface integral σx2zdS\int_\sigma x^2 z \, dS, let's go step by step. The surface σ\sigma is part of the sphere x2+y2+z2=1x^2 + y^2 + z^2 = 1 above the plane z=12z = \frac{1}{2}. We will use the standard parameterization for the sphere.

Step 1: Parameterization of the Sphere

The parameterization of the sphere x2+y2+z2=1x^2 + y^2 + z^2 = 1 can be written in spherical coordinates as: x=sinϕcosθ,y=sinϕsinθ,z=cosϕ,x = \sin\phi \cos\theta, \quad y = \sin\phi \sin\theta, \quad z = \cos\phi, where:

  • ϕ\phi is the polar angle (0ϕπ0 \leq \phi \leq \pi),
  • θ\theta is the azimuthal angle (0θ2π0 \leq \theta \leq 2\pi).

Since the surface is above z=12z = \frac{1}{2}, the polar angle ϕ\phi is restricted to 0ϕarccos(12)=π30 \leq \phi \leq \arccos\left(\frac{1}{2}\right) = \frac{\pi}{3}.

Step 2: Surface Area Element

The surface area element dSdS in spherical coordinates is given by: dS=rϕ×rθdϕdθ=sinϕdϕdθ.dS = \left| \frac{\partial \vec{r}}{\partial \phi} \times \frac{\partial \vec{r}}{\partial \theta} \right| d\phi \, d\theta = \sin\phi \, d\phi \, d\theta.

Step 3: Expression for the Integrand

From the parameterization: x2=sin2ϕcos2θ,z=cosϕ.x^2 = \sin^2\phi \cos^2\theta, \quad z = \cos\phi. The integrand x2zx^2 z becomes: x2z=sin2ϕcos2θcosϕ.x^2 z = \sin^2\phi \cos^2\theta \cos\phi.

Step 4: Setting Up the Integral

The limits for ϕ\phi are 00 to π3\frac{\pi}{3}, and the limits for θ\theta are 00 to 2π2\pi. The integral is: σx2zdS=02π0π3sin2ϕcos2θcosϕsinϕdϕdθ.\int_\sigma x^2 z \, dS = \int_0^{2\pi} \int_0^{\frac{\pi}{3}} \sin^2\phi \cos^2\theta \cos\phi \sin\phi \, d\phi \, d\theta.

Step 5: Simplify and Separate the Integral

Separate the angular and polar components: σx2zdS=02πcos2θdθ0π3sin3ϕcosϕdϕ.\int_\sigma x^2 z \, dS = \int_0^{2\pi} \cos^2\theta \, d\theta \int_0^{\frac{\pi}{3}} \sin^3\phi \cos\phi \, d\phi.

Solve the Angular Integral:

02πcos2θdθ=π.\int_0^{2\pi} \cos^2\theta \, d\theta = \pi.

Solve the Polar Integral:

Let u=cosϕu = \cos\phi, so du=sinϕdϕdu = -\sin\phi \, d\phi. The limits change as:

  • When ϕ=0\phi = 0, u=1u = 1.
  • When ϕ=π3\phi = \frac{\pi}{3}, u=12u = \frac{1}{2}.

The integral becomes: 0π3sin3ϕcosϕdϕ=112(1u2)u(du)=121(u3u)du.\int_0^{\frac{\pi}{3}} \sin^3\phi \cos\phi \, d\phi = \int_1^{\frac{1}{2}} (1 - u^2) u \, (-du) = \int_{\frac{1}{2}}^1 (u^3 - u) \, du.

Evaluate: 121u3du=[u44]121=14164=1664164=1564.\int_{\frac{1}{2}}^1 u^3 \, du = \left[ \frac{u^4}{4} \right]_{\frac{1}{2}}^1 = \frac{1}{4} - \frac{1}{64} = \frac{16}{64} - \frac{1}{64} = \frac{15}{64}. 121udu=[u22]121=1218=4818=38.\int_{\frac{1}{2}}^1 u \, du = \left[ \frac{u^2}{2} \right]_{\frac{1}{2}}^1 = \frac{1}{2} - \frac{1}{8} = \frac{4}{8} - \frac{1}{8} = \frac{3}{8}.

Thus: 0π3sin3ϕcosϕdϕ=15642464=964.\int_0^{\frac{\pi}{3}} \sin^3\phi \cos\phi \, d\phi = \frac{15}{64} - \frac{24}{64} = -\frac{9}{64}.

Step 6: Combine Results

σx2zdS=π964=9π64.\int_\sigma x^2 z \, dS = \pi \cdot -\frac{9}{64} = -\frac{9\pi}{64}.

The final answer is: 9π64\boxed{-\frac{9\pi}{64}}

Would you like me to explain any step in detail or go further with alternative approaches?


Related Questions:

  1. What is the geometric interpretation of the integral σx2zdS\int_\sigma x^2 z \, dS?
  2. How does the plane z=12z = \frac{1}{2} affect the limits of integration for ϕ\phi?
  3. Can this integral be solved using Cartesian coordinates instead of spherical coordinates?
  4. What is the significance of dS=sinϕdϕdθdS = \sin\phi \, d\phi \, d\theta in spherical parametrization?
  5. How would the answer change if the sphere were larger (e.g., x2+y2+z2=4x^2 + y^2 + z^2 = 4)?

Tip:

When integrating over surfaces, always carefully analyze symmetry or boundaries to simplify computations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Surface Integrals
Spherical Coordinates
Vector Calculus

Formulas

Surface area element in spherical coordinates: dS = |∂r/∂φ × ∂r/∂θ| dφ dθ
Spherical coordinate parameterization: x = sinφ cosθ, y = sinφ sinθ, z = cosφ
Transformation for integration bounds using geometry of sphere and plane

Theorems

Spherical coordinate system
Integral transformation techniques

Suitable Grade Level

Undergraduate Mathematics (Multivariable Calculus)