Let σ be a portion of the sphere x² + y² + z² = 1 above the plane z = 1/2. Compute the integral ∫∫σ x²z dS.
Solution
To compute the given surface integral ∫σx2zdS, let's go step by step. The surface σ is part of the sphere x2+y2+z2=1 above the plane z=21. We will use the standard parameterization for the sphere.
Step 1: Parameterization of the Sphere
The parameterization of the sphere x2+y2+z2=1 can be written in spherical coordinates as:
x=sinϕcosθ,y=sinϕsinθ,z=cosϕ,
where:
ϕ is the polar angle (0≤ϕ≤π),
θ is the azimuthal angle (0≤θ≤2π).
Since the surface is above z=21, the polar angle ϕ is restricted to 0≤ϕ≤arccos(21)=3π.
Step 2: Surface Area Element
The surface area element dS in spherical coordinates is given by:
dS=∂ϕ∂r×∂θ∂rdϕdθ=sinϕdϕdθ.
Step 3: Expression for the Integrand
From the parameterization:
x2=sin2ϕcos2θ,z=cosϕ.
The integrand x2z becomes:
x2z=sin2ϕcos2θcosϕ.
Step 4: Setting Up the Integral
The limits for ϕ are 0 to 3π, and the limits for θ are 0 to 2π. The integral is:
∫σx2zdS=∫02π∫03πsin2ϕcos2θcosϕsinϕdϕdθ.
Step 5: Simplify and Separate the Integral
Separate the angular and polar components:
∫σx2zdS=∫02πcos2θdθ∫03πsin3ϕcosϕdϕ.
Solve the Angular Integral:
∫02πcos2θdθ=π.
Solve the Polar Integral:
Let u=cosϕ, so du=−sinϕdϕ. The limits change as:
When ϕ=0, u=1.
When ϕ=3π, u=21.
The integral becomes:
∫03πsin3ϕcosϕdϕ=∫121(1−u2)u(−du)=∫211(u3−u)du.
Surface area element in spherical coordinates: dS = |∂r/∂φ × ∂r/∂θ| dφ dθ Spherical coordinate parameterization: x = sinφ cosθ, y = sinφ sinθ, z = cosφ Transformation for integration bounds using geometry of sphere and plane
Theorems
Spherical coordinate system Integral transformation techniques