Math Problem Statement

Let σ be a portion of the sphere x² + y² + z² = 1 above the plane z = 1/2. Compute ∬σ x²z dS. Use the standard parameterization of the sphere x² + y² + z² = a², with a = 1.

Solution

To solve the problem, we need to compute the surface integral of x2zx^2 z over the portion of the sphere x2+y2+z2=1x^2 + y^2 + z^2 = 1 above the plane z=12z = \frac{1}{2}. Let us proceed with the steps.

Step 1: Parameterization of the Sphere

The sphere x2+y2+z2=1x^2 + y^2 + z^2 = 1 can be parameterized as: x=sinϕcosθ,y=sinϕsinθ,z=cosϕ,x = \sin\phi \cos\theta, \quad y = \sin\phi \sin\theta, \quad z = \cos\phi, where ϕ\phi is the polar angle (0ϕπ0 \leq \phi \leq \pi) and θ\theta is the azimuthal angle (0θ<2π0 \leq \theta < 2\pi).

Since the surface is only the portion above z=12z = \frac{1}{2}, we need to determine the range of ϕ\phi. Since z=cosϕz = \cos\phi, the condition z12z \geq \frac{1}{2} implies: [ \cos\phi \geq \frac{1}{2} \quad \Rightarrow \quad \phi \in [0, \arccos(\frac{1}{2})] = [0, \frac{\pi}{3}]. ]

Thus, the parameter ranges are: [ \phi \in [0, \frac{\pi}{3}], \quad \theta \in [0, 2\pi]. ]

Step 2: Surface Element dSdS

The surface element dSdS on a sphere is given by: dS=rϕ×rθdϕdθ,dS = |\mathbf{r}_\phi \times \mathbf{r}_\theta| d\phi d\theta, where rϕ\mathbf{r}_\phi and rθ\mathbf{r}_\theta are partial derivatives of the parameterization: r(ϕ,θ)=(sinϕcosθ,sinϕsinθ,cosϕ).\mathbf{r}(\phi, \theta) = (\sin\phi\cos\theta, \sin\phi\sin\theta, \cos\phi).

The cross product rϕ×rθ|\mathbf{r}_\phi \times \mathbf{r}_\theta| simplifies to sinϕ\sin\phi. Thus: dS=sinϕdϕdθ.dS = \sin\phi \, d\phi \, d\theta.

Step 3: Setting Up the Integral

The function to be integrated is x2zx^2 z. Substituting the parameterization: x2=(sinϕcosθ)2=sin2ϕcos2θ,z=cosϕ.x^2 = (\sin\phi\cos\theta)^2 = \sin^2\phi\cos^2\theta, \quad z = \cos\phi. Thus: x2z=sin2ϕcos2θcosϕ.x^2 z = \sin^2\phi \cos^2\theta \cos\phi.

The surface integral becomes: σx2zdS=02π0π/3sin2ϕcos2θcosϕsinϕdϕdθ.\iint_\sigma x^2 z \, dS = \int_0^{2\pi} \int_0^{\pi/3} \sin^2\phi \cos^2\theta \cos\phi \sin\phi \, d\phi \, d\theta.

Step 4: Separating the Integral

Separate the integral into ϕ\phi- and θ\theta-dependent parts: 02πcos2θdθand0π/3sin2ϕcosϕsinϕdϕ.\int_0^{2\pi} \cos^2\theta \, d\theta \quad \text{and} \quad \int_0^{\pi/3} \sin^2\phi \cos\phi \sin\phi \, d\phi.

θ\theta-Integral:

02πcos2θdθ=02π1+cos(2θ)2dθ=π.\int_0^{2\pi} \cos^2\theta \, d\theta = \int_0^{2\pi} \frac{1 + \cos(2\theta)}{2} \, d\theta = \pi.

ϕ\phi-Integral:

Simplify sin2ϕcosϕsinϕ\sin^2\phi \cos\phi \sin\phi as sin3ϕcosϕ\sin^3\phi \cos\phi: 0π/3sin3ϕcosϕdϕ=0π/314ddϕ(sin4ϕ)dϕ.\int_0^{\pi/3} \sin^3\phi \cos\phi \, d\phi = \int_0^{\pi/3} \frac{1}{4} \frac{d}{d\phi} (\sin^4\phi) \, d\phi. This evaluates to: 14[sin4ϕ]0π/3=14(sin4π3sin40)=14((32)40)=14916=964.\frac{1}{4} [\sin^4\phi]_0^{\pi/3} = \frac{1}{4} \left( \sin^4\frac{\pi}{3} - \sin^4 0 \right) = \frac{1}{4} \left( \left( \frac{\sqrt{3}}{2} \right)^4 - 0 \right) = \frac{1}{4} \cdot \frac{9}{16} = \frac{9}{64}.

Step 5: Combine Results

Multiply the results: σx2zdS=π964=9π64.\iint_\sigma x^2 z \, dS = \pi \cdot \frac{9}{64} = \frac{9\pi}{64}.

Thus, the final result is: 9π64.\boxed{\frac{9\pi}{64}}.

Let me know if you'd like clarification or additional steps! Here are some follow-up questions for further exploration:


  1. Can you explain how to derive the surface element dSdS for other parameterizations?
  2. How would the integral change if the sphere were shifted in space?
  3. What happens if the plane z=12z = \frac{1}{2} intersects a different section of the sphere?
  4. How do you interpret surface integrals geometrically?
  5. Can this problem be solved using spherical coordinates directly instead of parameterization?

Tip: When working with surface integrals, always verify your limits of integration to ensure you cover the correct surface region.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Surface Integrals
Sphere Parameterization
Spherical Coordinates

Formulas

Sphere parameterization: x = sinφ cosθ, y = sinφ sinθ, z = cosφ
Surface element: dS = sinφ dφ dθ
Integral of x²z: ∬σ x²z dS = ∫(0 to 2π) ∫(0 to π/3) sin²φ cos²θ cosφ sinφ dφ dθ

Theorems

Surface Integral Definition
Spherical Coordinate Transformation

Suitable Grade Level

Undergraduate (Calculus III or Multivariable Calculus)