Math Problem Statement

Let σ be a surface in the first octant cut out from the plane x + y + z = 1 by the coordinate planes. Compute the surface integral: ∫∫_σ (1 / (1 + x + z)^2) dS.

Solution

To solve the given surface integral, we follow these steps:

Problem Overview

We need to evaluate the surface integral: σ1(1+x+z)2dS,\iint_\sigma \frac{1}{(1+x+z)^2} \, dS, where σ\sigma is the portion of the plane x+y+z=1x + y + z = 1 in the first octant bounded by the coordinate planes x=0x = 0, y=0y = 0, and z=0z = 0.


Step 1: Parametrize the Plane

The equation of the plane is x+y+z=1x + y + z = 1. Solving for zz, we have: z=1xy.z = 1 - x - y. The plane in the first octant is bounded by the coordinate planes and the plane x+y+z=1x + y + z = 1. Thus, the bounds are: 0x1,0y1x.0 \leq x \leq 1, \quad 0 \leq y \leq 1 - x.


Step 2: Compute dSdS

The surface element dSdS is given by: dS=(zx)2+(zy)2+1dxdy.dS = \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} \, dx \, dy. For z=1xyz = 1 - x - y: zx=1,zy=1.\frac{\partial z}{\partial x} = -1, \quad \frac{\partial z}{\partial y} = -1. Thus: dS=(1)2+(1)2+1dxdy=1+1+1dxdy=3dxdy.dS = \sqrt{(-1)^2 + (-1)^2 + 1} \, dx \, dy = \sqrt{1 + 1 + 1} \, dx \, dy = \sqrt{3} \, dx \, dy.


Step 3: Setup the Surface Integral

Substitute dS=3dxdydS = \sqrt{3} \, dx \, dy and z=1xyz = 1 - x - y into the integral: σ1(1+x+z)2dS=R1(1+x+(1xy))23dxdy,\iint_\sigma \frac{1}{(1 + x + z)^2} \, dS = \iint_R \frac{1}{(1 + x + (1 - x - y))^2} \sqrt{3} \, dx \, dy, where RR is the region in the xyxy-plane defined by: 0x1,0y1x.0 \leq x \leq 1, \quad 0 \leq y \leq 1 - x.

Simplify the integrand: 1+x+z=1+x+(1xy)=2y.1 + x + z = 1 + x + (1 - x - y) = 2 - y. Thus, the integral becomes: R3(2y)2dxdy.\iint_R \frac{\sqrt{3}}{(2 - y)^2} \, dx \, dy.


Step 4: Evaluate the Integral

Factor out 3\sqrt{3}: 30101x1(2y)2dydx.\sqrt{3} \int_0^1 \int_0^{1-x} \frac{1}{(2 - y)^2} \, dy \, dx. First, evaluate the inner integral with respect to yy: 01x1(2y)2dy.\int_0^{1-x} \frac{1}{(2 - y)^2} \, dy. Let u=2yu = 2 - y, so du=dydu = -dy. When y=0y = 0, u=2u = 2. When y=1xy = 1-x, u=1+xu = 1+x. The integral becomes: 21+x1u2du=[1u]21+x=1211+x.-\int_2^{1+x} \frac{1}{u^2} \, du = \left[\frac{1}{u}\right]_2^{1+x} = \frac{1}{2} - \frac{1}{1+x}.

Thus, the integral becomes: 301(1211+x)dx.\sqrt{3} \int_0^1 \left(\frac{1}{2} - \frac{1}{1+x}\right) \, dx.


Step 5: Evaluate the Outer Integral

Split into two parts: 3[0112dx0111+xdx].\sqrt{3} \left[\int_0^1 \frac{1}{2} \, dx - \int_0^1 \frac{1}{1+x} \, dx\right].

  1. First term: 0112dx=12011dx=12[x]01=12.\int_0^1 \frac{1}{2} \, dx = \frac{1}{2} \int_0^1 1 \, dx = \frac{1}{2} [x]_0^1 = \frac{1}{2}.

  2. Second term: 0111+xdx=ln1+x01=ln(2)ln(1)=ln(2).\int_0^1 \frac{1}{1+x} \, dx = \ln|1+x|_0^1 = \ln(2) - \ln(1) = \ln(2).

Combine the results: 3(12ln(2)).\sqrt{3} \left(\frac{1}{2} - \ln(2)\right).


Final Answer

3(12ln(2)).\boxed{\sqrt{3} \left(\frac{1}{2} - \ln(2)\right).}

Let me know if you'd like more details or have further questions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Surface Integrals
Plane Geometry
Parametrization

Formulas

Surface integral formula: ∫∫_σ f(x, y, z) dS = ∫∫_R f(x, y, z(x, y)) sqrt((∂z/∂x)^2 + (∂z/∂y)^2 + 1) dx dy
Equation of the plane: x + y + z = 1

Theorems

Parametrization of Surfaces
Multivariable Integration

Suitable Grade Level

Undergraduate (Calculus III)