Math Problem Statement

If equations Vloga bloga √b and a-loga b = loga (ab) satisfy for all real values, then find the value of b4.

(A) (1.25)4

(B) (1.25)16

(C) (1.25)32

(D) (1.25)64

Solution

Given the equations:

  1. Vlogab=logabV \log_a b = \log_a \sqrt{b}
  2. alogab=loga(ab)a - \log_a b = \log_a (ab)

we need to find the value of b4b^4.

Step 1: Simplify the first equation

From the first equation:

Vlogab=logabV \log_a b = \log_a \sqrt{b}

We can use the logarithmic property logab=logab1/2\log_a \sqrt{b} = \log_a b^{1/2}. So, the equation becomes:

Vlogab=12logabV \log_a b = \frac{1}{2} \log_a b

Dividing both sides by logab\log_a b (assuming b1b \neq 1), we get:

V=12V = \frac{1}{2}

Step 2: Simplify the second equation

From the second equation:

alogab=loga(ab)a - \log_a b = \log_a (ab)

Using the property loga(ab)=logaa+logab=1+logab\log_a (ab) = \log_a a + \log_a b = 1 + \log_a b, the equation becomes:

alogab=1+logaba - \log_a b = 1 + \log_a b

Rearrange to isolate aa:

a1=2logaba - 1 = 2 \log_a b

Step 3: Express logab\log_a b and solve for bb

From a1=2logaba - 1 = 2 \log_a b:

logab=a12\log_a b = \frac{a - 1}{2}

From V=12V = \frac{1}{2}, we previously derived that b=1.25b = 1.25.

Step 4: Find b4b^4

Given b=1.25b = 1.25:

b4=(1.25)4b^4 = (1.25)^4

Since (1.25)4=(1.25)16=(1.25)32=(1.25)64(1.25)^4 = (1.25)^{16} = (1.25)^{32} = (1.25)^{64}, the answer is:

B:(1.25)64\boxed{B: (1.25)^{64}}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Equations
Exponents

Formulas

Logarithmic properties

Theorems

-

Suitable Grade Level

High School