Math Problem Statement

Part 1 : Suppose log_k(p) = - 5 and log_k(q) = 3 . 1. The value of log_k(p ^ - 5 * q ^ - 4) is 13 2. The value of log_k(root(p ^ 2 * q ^ 5, 2)) is 3. One way to express k ^ - 9 in terms of p and is in terms of k ^ - 9 = 4. If log_k(r) = 16 , one way to express r in terms of p and q is

Solution

Let's solve each part step-by-step.

Part 1

  1. Given: logk(p)=5andlogk(q)=3\log_k(p) = -5 \quad \text{and} \quad \log_k(q) = 3 Find: logk(p5q4)=13\log_k(p^{-5} \cdot q^{-4}) = 13

    This has already been calculated as 13.

Part 2

  1. Given: logk(p)=5andlogk(q)=3\log_k(p) = -5 \quad \text{and} \quad \log_k(q) = 3 Find: logk(p2q5)\log_k\left(\sqrt{p^2 \cdot q^5}\right)

    First, we simplify the expression inside the logarithm: p2q5=(p2q5)1/2\sqrt{p^2 \cdot q^5} = (p^2 \cdot q^5)^{1/2}

    Apply the power rule: logk((p2q5)1/2)=12logk(p2q5)\log_k\left((p^2 \cdot q^5)^{1/2}\right) = \frac{1}{2} \log_k(p^2 \cdot q^5)

    Use the product rule: logk(p2q5)=logk(p2)+logk(q5)\log_k(p^2 \cdot q^5) = \log_k(p^2) + \log_k(q^5)

    Apply the power rule to each term: logk(p2)=2logk(p)=2(5)=10\log_k(p^2) = 2 \log_k(p) = 2 \cdot (-5) = -10 logk(q5)=5logk(q)=53=15\log_k(q^5) = 5 \log_k(q) = 5 \cdot 3 = 15

    Combine the terms: logk(p2q5)=10+15=5\log_k(p^2 \cdot q^5) = -10 + 15 = 5

    Now apply the 12\frac{1}{2} factor: 12logk(p2q5)=125=2.5\frac{1}{2} \log_k(p^2 \cdot q^5) = \frac{1}{2} \cdot 5 = 2.5

    So the value is: logk(p2q5)=2.5\log_k\left(\sqrt{p^2 \cdot q^5}\right) = 2.5

Part 3

  1. Expressing k9k^{-9} in terms of pp and qq:

    We know that: logk(p)=5andlogk(q)=3\log_k(p) = -5 \quad \text{and} \quad \log_k(q) = 3

    First, let's express k9k^{-9} in terms of kk: k9=1k9k^{-9} = \frac{1}{k^9}

    Using the definitions of logarithms, express pp and qq in terms of kk: p=k5andq=k3p = k^{-5} \quad \text{and} \quad q = k^3

    Let's find an expression for k9k^{-9}: k9=(k5)9/5=p9/5k^{-9} = (k^{-5})^{9/5} = p^{9/5} k9=(k3)3=q3k^{-9} = (k^{3})^{-3} = q^{-3}

    So, we have: k9=p9/5ork9=q3k^{-9} = p^{9/5} \quad \text{or} \quad k^{-9} = q^{-3}

Part 4

  1. Given: logk(r)=16\log_k(r) = 16 Express rr in terms of pp and qq:

    We know: logk(p)=5andlogk(q)=3\log_k(p) = -5 \quad \text{and} \quad \log_k(q) = 3

    From the logarithm definitions: p=k5andq=k3p = k^{-5} \quad \text{and} \quad q = k^3

    We need to find rr such that: logk(r)=16    r=k16\log_k(r) = 16 \implies r = k^{16}

    Let's express k16k^{16} in terms of pp and qq: k16=(k5)16/5=p16/5k^{16} = (k^{-5})^{-16/5} = p^{-16/5} k16=(k3)16/3=q16/3k^{16} = (k^3)^{16/3} = q^{16/3}

    So, we have: r=p16/5orr=q16/3r = p^{-16/5} \quad \text{or} \quad r = q^{16/3}

Would you like more details or have any questions?

Here are 8 related questions to expand on this topic:

  1. What is the value of logk(p3q2)\log_k(p^3 \cdot q^2)?
  2. How do you simplify logk(pq)\log_k(\frac{p}{q}) using logk(p)\log_k(p) and logk(q)\log_k(q)?
  3. What is the inverse function of logk(x)\log_k(x)?
  4. How can you express k7k^7 in terms of pp and qq?
  5. If logk(s)=2\log_k(s) = 2, how can ss be expressed in terms of pp and qq?
  6. What is logk(p4)\log_k(p^4)?
  7. How do you simplify logk(p3q2)\log_k(p^3 \cdot q^{-2})?
  8. If logk(t)=1\log_k(t) = -1, how can tt be expressed in terms of pp and qq?

Tip: Remember that logarithms and exponents are inverse operations. This relationship is key to transforming expressions and solving logarithmic equations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Exponents

Formulas

Logarithm properties
Power rule for logarithms

Theorems

-

Suitable Grade Level

High School