Math Problem Statement

4^a=5 5^b=6 6^c=7 7^d=8 what is abc*d

Solution

To solve for abcda \cdot b \cdot c \cdot d given the equations 4a=54^a = 5, 5b=65^b = 6, 6c=76^c = 7, and 7d=87^d = 8, we can take the natural logarithm of both sides of each equation.

Starting with 4a=54^a = 5:

ln(4a)=ln(5)\ln(4^a) = \ln(5) aln(4)=ln(5)a \ln(4) = \ln(5) a=ln(5)ln(4)a = \frac{\ln(5)}{\ln(4)}

Next, for 5b=65^b = 6:

ln(5b)=ln(6)\ln(5^b) = \ln(6) bln(5)=ln(6)b \ln(5) = \ln(6) b=ln(6)ln(5)b = \frac{\ln(6)}{\ln(5)}

Then, for 6c=76^c = 7:

ln(6c)=ln(7)\ln(6^c) = \ln(7) cln(6)=ln(7)c \ln(6) = \ln(7) c=ln(7)ln(6)c = \frac{\ln(7)}{\ln(6)}

Finally, for 7d=87^d = 8:

ln(7d)=ln(8)\ln(7^d) = \ln(8) dln(7)=ln(8)d \ln(7) = \ln(8) d=ln(8)ln(7)d = \frac{\ln(8)}{\ln(7)}

Now, we need to find abcda \cdot b \cdot c \cdot d:

abcd=(ln(5)ln(4))(ln(6)ln(5))(ln(7)ln(6))(ln(8)ln(7))a \cdot b \cdot c \cdot d = \left( \frac{\ln(5)}{\ln(4)} \right) \left( \frac{\ln(6)}{\ln(5)} \right) \left( \frac{\ln(7)}{\ln(6)} \right) \left( \frac{\ln(8)}{\ln(7)} \right)

Notice that in the product, all the logarithmic terms cancel each other out:

abcd=ln(5)ln(4)ln(6)ln(5)ln(7)ln(6)ln(8)ln(7)=ln(8)ln(4)a \cdot b \cdot c \cdot d = \frac{\ln(5)}{\ln(4)} \cdot \frac{\ln(6)}{\ln(5)} \cdot \frac{\ln(7)}{\ln(6)} \cdot \frac{\ln(8)}{\ln(7)} = \frac{\ln(8)}{\ln(4)}

Simplifying the remaining expression:

ln(8)ln(4)=ln(23)ln(22)=3ln(2)2ln(2)=32\frac{\ln(8)}{\ln(4)} = \frac{\ln(2^3)}{\ln(2^2)} = \frac{3 \ln(2)}{2 \ln(2)} = \frac{3}{2}

Thus, the value of abcda \cdot b \cdot c \cdot d is 32\frac{3}{2}.

Would you like more details or have any questions?

Here are five questions you might find interesting:

  1. How do logarithmic properties simplify complex equations?
  2. Can you explain the concept of natural logarithms?
  3. How do you solve exponential equations with different bases?
  4. What are some real-world applications of logarithms?
  5. How can logarithmic identities help in solving integrals?

Tip: When dealing with exponential equations, taking the natural logarithm of both sides can greatly simplify the problem by reducing the exponent.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponential Equations
Logarithms

Formulas

Logarithm properties
Exponential equations

Theorems

-

Suitable Grade Level

Grades 10-12