Math Problem Statement

solve the 8 problem

Solution

Let's solve each problem step-by-step.

3.

(a) log5125\log_5 125

125=53125 = 5^3 log5125=log5(53)=3\log_5 125 = \log_5 (5^3) = 3

(b) log5(1125)\log_5 \left(\frac{1}{125}\right)

1125=53\frac{1}{125} = 5^{-3} log5(1125)=log5(53)=3\log_5 \left(\frac{1}{125}\right) = \log_5 (5^{-3}) = -3

4.

(a) ln(1e)\ln\left(\frac{1}{e}\right)

1e=e1\frac{1}{e} = e^{-1} ln(1e)=ln(e1)=1\ln\left(\frac{1}{e}\right) = \ln(e^{-1}) = -1

(b) log1010\log_{10} \sqrt{10}

10=101/2\sqrt{10} = 10^{1/2} log1010=log10(101/2)=12\log_{10} \sqrt{10} = \log_{10} (10^{1/2}) = \frac{1}{2}

5.

(a) e4.5e^{4.5}

e4.5 is already in its simplest form.e^{4.5} \text{ is already in its simplest form.}

(b) log100.0001\log_{10} 0.0001

0.0001=1040.0001 = 10^{-4} log100.0001=log10(104)=4\log_{10} 0.0001 = \log_{10} (10^{-4}) = -4

6.

(a) log52.25\log_5 2.25

2.25=(32)22.25 = \left(\frac{3}{2}\right)^2 log52.25=log5((32)2)=2log5(32)\log_5 2.25 = \log_5 \left(\left(\frac{3}{2}\right)^2\right) = 2 \log_5 \left(\frac{3}{2}\right)

(b) log4500\log_4 500

log4500=log10500log104\log_4 500 = \frac{\log_{10} 500}{\log_{10} 4}

7.

(a) log66log615+log620\log_6 6 - \log_6 15 + \log_6 20

log66=1\log_6 6 = 1 log615=log6(3×5)=log63+log65\log_6 15 = \log_6 (3 \times 5) = \log_6 3 + \log_6 5 log620=log6(22×5)=2log62+log65\log_6 20 = \log_6 (2^2 \times 5) = 2 \log_6 2 + \log_6 5

Combining them: 1(log63+log65)+(2log62+log65)=1log63+2log621 - (\log_6 3 + \log_6 5) + (2 \log_6 2 + \log_6 5) = 1 - \log_6 3 + 2 \log_6 2

(b) log100100log10018log10050\log_{100} 100 - \log_{100} 18 - \log_{100} 50

log100100=1\log_{100} 100 = 1 log10018+log10050=log100(18×50)\log_{100} 18 + \log_{100} 50 = \log_{100} (18 \times 50) log100900=log100(100×9)=log100100+log1009=1+log1009\log_{100} 900 = \log_{100} (100 \times 9) = \log_{100} 100 + \log_{100} 9 = 1 + \log_{100} 9

Combining them: 1(1+log1009)=log10091 - (1 + \log_{100} 9) = - \log_{100} 9

8.

(a) e2+ln5e^{2 + \ln 5}

e2+ln5=e2×eln5=e2×5e^{2 + \ln 5} = e^2 \times e^{\ln 5} = e^2 \times 5

(b) ln(ee4)\ln \left(e^{e^4}\right)

ln(ee4)=e4\ln \left(e^{e^4}\right) = e^4


Would you like any further details or have any questions on any of these solutions?

Here are 8 related questions to expand on the topic:

  1. How would you express log232\log_2 32 in its simplest form?
  2. Can you simplify ln(e7)\ln(e^7)?
  3. What is the value of log32781\log_3 \frac{27}{81}?
  4. How do you solve log749\log_7 49?
  5. What is the result of ln(1e3)\ln(\frac{1}{e^3})?
  6. How do you simplify log101000\log_{10} 1000?
  7. Can you calculate log864\log_8 64?
  8. How would you solve log20.5\log_2 0.5?

Tip: Always remember that logarithms and exponentials are inverse operations. This is key to simplifying many expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Exponentials
Natural Logarithms
Common Logarithms

Formulas

Properties of logarithms
Exponential rules

Theorems

-

Suitable Grade Level

High School and Above