Math Problem Statement
on considère la suite Un définie par U0 = 2 et appartenant à tout N qui appartient à un nombre réel un plus un = 1 + 3 un sur un + 3 démontrer par récurrence que la suite un est minorée par 1
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Sequences
Mathematical Induction
Recurrence Relations
Formulas
u_{n+1} = 1 + \frac{3u_n}{u_n + 3}
u_{n+1} - 1 = \frac{3u_n}{u_n + 3}
Theorems
Principle of Mathematical Induction
Suitable Grade Level
Grades 10-12
Related Recommendation
Proof by Mathematical Induction: Demonstrate Inequality for Sequence U_n ≤ 2 - 1/n
Mathematical Induction Proof for Sequence Inequality: 0 ≤ Un ≤ 1
Mathematical Induction and Sequence Behavior: Prove and Analyze a Recurrence Relation
Inductive Proof for a Recurrence Sequence: u(n+1) = (3un + 1)/(un + 3)
Proof by Recurrence: Demonstrating Un = 3n^2 + 9n + 7 with U0 = 7