Math Problem Statement
Tentukan dua digit terakhir dari 2003^2002^2001
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Modular Arithmetic
Exponentiation
Chinese Remainder Theorem
Euler's Theorem
Formulas
a^b mod m
Euler's Totient Function: φ(m)
Chinese Remainder Theorem
Theorems
Euler's Theorem
Chinese Remainder Theorem
Suitable Grade Level
Undergraduate Mathematics or Advanced High School Level
Related Recommendation
Dua Digit Terakhir dari 2003^2002^2001 dengan Modular Arithmetic dan Teorema Euler
Find the Last Two Digits of 2003^2002^2001 Using Modular Arithmetic
Find the Last Two Digits of 2003^2002^2001 Using Modular Arithmetic and Euler's Theorem
Calculating Large Exponents: 222^3333 + 333^222
Pembuktian Barisan Bilangan Bulat dengan Prinsip Sarang Merpati