Math Problem Statement
Tentukan dua digit terakhir dari 2003^2002^2001
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Exponentiation
Modular Arithmetic
Number Theory
Formulas
a^b mod m
Theorems
Euler's Theorem
Chinese Remainder Theorem
Suitable Grade Level
Undergraduate Level
Related Recommendation
Find the Last Two Digits of 2003^2002^2001 Using Modular Arithmetic and Euler's Theorem
Dua Digit Terakhir dari 2003^2002^2001 dengan Modular Arithmetic dan Teorema Euler
Calculating Large Exponents: 222^3333 + 333^222
Divisibility of Expression with Large Exponents (20^2004 + 16^2004 - 3^2004 - 1)
Dua Digit Terakhir dari 2003^2002^2001 dengan Teorema Euler dan Teorema Sisa Cina