Math Problem Statement
Solution
To find the curvature of the curve , we use the formula:
Step 1: Compute (the first derivative)
Step 2: Compute (the second derivative)
Step 3: Compute (the cross product)
\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -6\cos(t) & 2 & -6\sin(t) \\ 6\sin(t) & 0 & -6\cos(t) \end{vmatrix}.$$ Expanding this determinant: $$\vec{r}'(t) \times \vec{r}''(t) = \mathbf{i} \begin{vmatrix} 2 & -6\sin(t) \\ 0 & -6\cos(t) \end{vmatrix} - \mathbf{j} \begin{vmatrix} -6\cos(t) & -6\sin(t) \\ 6\sin(t) & -6\cos(t) \end{vmatrix} + \mathbf{k} \begin{vmatrix} -6\cos(t) & 2 \\ 6\sin(t) & 0 \end{vmatrix}.$$ Simplify each component: - $$\mathbf{i}$$: $$(2)(-6\cos(t)) - (0)(-6\sin(t)) = -12\cos(t)$$. - $$\mathbf{j}$$: $$(-6\cos(t))(-6\cos(t)) - (-6\sin(t))(6\sin(t)) = 36\cos^2(t) + 36\sin^2(t) = 36$$. - $$\mathbf{k}$$: $$(-6\cos(t))(0) - (6\sin(t))(2) = -12\sin(t)$$. Thus: $$\vec{r}'(t) \times \vec{r}''(t) = \langle -12\cos(t), -36, -12\sin(t) \rangle.$$ ### Step 4: Compute $$\|\vec{r}'(t) \times \vec{r}''(t)\|$$ $$\|\vec{r}'(t) \times \vec{r}''(t)\| = \sqrt{(-12\cos(t))^2 + (-36)^2 + (-12\sin(t))^2}.$$ Simplify: $$\|\vec{r}'(t) \times \vec{r}''(t)\| = \sqrt{144\cos^2(t) + 1296 + 144\sin^2(t)}.$$ Using $$\cos^2(t) + \sin^2(t) = 1$$: $$\|\vec{r}'(t) \times \vec{r}''(t)\| = \sqrt{144 + 1296} = \sqrt{1440} = 12\sqrt{10}.$$ ### Step 5: Compute $$\|\vec{r}'(t)\|$$ $$\|\vec{r}'(t)\| = \sqrt{(-6\cos(t))^2 + 2^2 + (-6\sin(t))^2}.$$ $$\|\vec{r}'(t)\| = \sqrt{36\cos^2(t) + 4 + 36\sin^2(t)}.$$ Simplify: $$\|\vec{r}'(t)\| = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10}.$$ ### Step 6: Compute $$\kappa(t)$$ $$\kappa(t) = \frac{\|\vec{r}'(t) \times \vec{r}''(t)\|}{\|\vec{r}'(t)\|^3}.$$ Substitute the values: $$\kappa(t) = \frac{12\sqrt{10}}{(2\sqrt{10})^3}.$$ Simplify: $$\kappa(t) = \frac{12\sqrt{10}}{8 \cdot 10 \cdot \sqrt{10}} = \frac{12\sqrt{10}}{80\sqrt{10}} = \frac{12}{80} = \frac{3}{20}.$$ ### Final Answer: $$\kappa(t) = \frac{3}{20}.$$ Would you like additional steps clarified or assistance with related concepts? Here are some related questions: 1. How is curvature used in physics or engineering? 2. What does the magnitude of curvature signify about a curve? 3. How do we compute the unit tangent vector for this curve? 4. Can curvature be used to compute the radius of a circle at a point on the curve? 5. How does the curvature formula change in 2D space? **Tip:** Always check if the curve's parameterization affects the simplifications when solving for curvature!Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Calculus
Curvature
Cross Product
Derivatives
Vector Norm
Formulas
Curvature: κ(t) = ||r'(t) × r''(t)|| / ||r'(t)||^3
Cross Product determinant expansion for three vectors
Norm of a vector: ||v|| = sqrt(v1^2 + v2^2 + v3^2)
Theorems
Pythagorean identity: cos^2(t) + sin^2(t) = 1
Curvature formula in 3D space
Suitable Grade Level
Undergraduate Calculus
Related Recommendation
Curvature of the Parameterized Curve r(t) = ⟨5 cos t, √7 sin t, 2 cos t⟩ using Alternative Curvature Formula
Find the Curvature of the Curve r(t) = ⟨3t, -3t^4, 5t^3⟩ at t = -2
Find the Unit Tangent Vector and Curvature for r(t) = (6t, 1/2t^2, t^2)
Find the Curvature of the Parametric Curve r(t) = (3cos(t), 2sin(t)) at t = π/3
Curvature of the Parametric Curve (sin(t), cos(t), 2t)