Math Problem Statement

Find the curvature of the curve defined by r(t) = (3cos(t), 2sin(t)) at t = π/3.

Solution

To solve this problem, we need to calculate the curvature κ(t)\kappa(t) of the given curve r(t)=3cos(t),2sin(t)\mathbf{r}(t) = \langle 3\cos(t), 2\sin(t) \rangle at t=π3t = \frac{\pi}{3}. The curvature formula for a plane curve parameterized by r(t)=x(t),y(t)\mathbf{r}(t) = \langle x(t), y(t) \rangle is:

κ(t)=r(t)×r(t)r(t)3.\kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}.

Step 1: Compute r(t)\mathbf{r}'(t)

The first derivative of r(t)\mathbf{r}(t) is: r(t)=ddt3cos(t),2sin(t)=3sin(t),2cos(t).\mathbf{r}'(t) = \frac{d}{dt}\langle 3\cos(t), 2\sin(t) \rangle = \langle -3\sin(t), 2\cos(t) \rangle.

Step 2: Compute r(t)\mathbf{r}''(t)

The second derivative of r(t)\mathbf{r}(t) is: r(t)=ddt3sin(t),2cos(t)=3cos(t),2sin(t).\mathbf{r}''(t) = \frac{d}{dt}\langle -3\sin(t), 2\cos(t) \rangle = \langle -3\cos(t), -2\sin(t) \rangle.

Step 3: Compute r(t)\|\mathbf{r}'(t)\|

The magnitude of r(t)\mathbf{r}'(t) is: r(t)=(3sin(t))2+(2cos(t))2=9sin2(t)+4cos2(t).\|\mathbf{r}'(t)\| = \sqrt{(-3\sin(t))^2 + (2\cos(t))^2} = \sqrt{9\sin^2(t) + 4\cos^2(t)}.

At t=π3t = \frac{\pi}{3}: sin(π3)=32,cos(π3)=12.\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}. Substitute these values: r(π3)=9(32)2+4(12)2=934+414=274+44=314=312.\|\mathbf{r}'\left(\frac{\pi}{3}\right)\| = \sqrt{9\left(\frac{\sqrt{3}}{2}\right)^2 + 4\left(\frac{1}{2}\right)^2} = \sqrt{9\frac{3}{4} + 4\frac{1}{4}} = \sqrt{\frac{27}{4} + \frac{4}{4}} = \sqrt{\frac{31}{4}} = \frac{\sqrt{31}}{2}.

Step 4: Compute r(t)×r(t)\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|

The cross product in 2D can be expressed as the determinant:

\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3\sin(t) & 2\cos(t) & 0 \\ -3\cos(t) & -2\sin(t) & 0 \end{vmatrix}.$$ Since this is a 2D curve, only the $$k$$-component is nonzero: $$\|\mathbf{r}'(t) \times \mathbf{r}''(t)\| = \left|-3\sin(t)(-2\sin(t)) - (-3\cos(t))(2\cos(t))\right| = \left|6\sin^2(t) + 6\cos^2(t)\right|.$$ Using the Pythagorean identity $$\sin^2(t) + \cos^2(t) = 1$$: $$\|\mathbf{r}'(t) \times \mathbf{r}''(t)\| = |6(1)| = 6.$$ ### Step 5: Compute $$\kappa(t)$$ The curvature is: $$\kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}.$$ At $$t = \frac{\pi}{3}$$: $$\kappa\left(\frac{\pi}{3}\right) = \frac{6}{\left(\frac{\sqrt{31}}{2}\right)^3} = \frac{6}{\frac{31\sqrt{31}}{8}} = \frac{6 \cdot 8}{31\sqrt{31}} = \frac{48}{31\sqrt{31}}.$$ ### Final Answer: $$\kappa\left(\frac{\pi}{3}\right) = \frac{48}{31\sqrt{31}}.$$ Would you like more details or a breakdown of any specific step? Here are some related questions to explore: 1. How is curvature applied in physics or engineering? 2. What are the geometric interpretations of curvature in 2D versus 3D? 3. How does the curvature of a circle differ from a more general curve? 4. What would happen to the curvature if the parameterization changes? 5. Can curvature be calculated directly from arc length instead of parameter $$t$$? **Tip:** Practice finding derivatives and magnitudes to strengthen your grasp on curvature calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Curvature
Parametric Curves

Formulas

Curvature formula: κ(t) = |r'(t) × r''(t)| / |r'(t)|^3
Magnitude of a vector: |v| = sqrt(vx^2 + vy^2)
Pythagorean identity: sin^2(t) + cos^2(t) = 1

Theorems

Curvature formula for parametric curves in 2D

Suitable Grade Level

Grades 11-12, Undergraduate