Math Problem Statement

Consider the following vector function.

r(t) = 6t

1

2

t2, t2

(a) Find the unit tangent vector T(t).

T(t)

 = 

(6√36+5t2​,t√36+5t2​,2t√36+5t2​)    

(b) Use this formula to find the curvature: |T'(t)|/|r'(t)|

Solution

Let's break down the problem into two parts: finding the unit tangent vector T(t)\mathbf{T}(t), and then using that to calculate the curvature.

Given Vector Function:

r(t)=(6t,12t2,t2)\mathbf{r}(t) = (6t, \frac{1}{2}t^2, t^2)

Part (a): Find the Unit Tangent Vector T(t)\mathbf{T}(t)

  1. Find the derivative of r(t)\mathbf{r}(t):

We need to differentiate r(t)\mathbf{r}(t) with respect to tt:

r(t)=(ddt(6t),ddt(12t2),ddt(t2))=(6,t,2t)\mathbf{r}'(t) = \left( \frac{d}{dt}(6t), \frac{d}{dt}\left(\frac{1}{2}t^2\right), \frac{d}{dt}(t^2) \right) = (6, t, 2t)

  1. Find the magnitude of r(t)\mathbf{r}'(t):

To get the magnitude of r(t)\mathbf{r}'(t), we use the formula:

r(t)=62+t2+(2t)2=36+t2+4t2=36+5t2|\mathbf{r}'(t)| = \sqrt{6^2 + t^2 + (2t)^2} = \sqrt{36 + t^2 + 4t^2} = \sqrt{36 + 5t^2}

  1. Find the unit tangent vector T(t)\mathbf{T}(t):

The unit tangent vector is found by normalizing r(t)\mathbf{r}'(t):

T(t)=r(t)r(t)=(636+5t2,t36+5t2,2t36+5t2)\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} = \left( \frac{6}{\sqrt{36 + 5t^2}}, \frac{t}{\sqrt{36 + 5t^2}}, \frac{2t}{\sqrt{36 + 5t^2}} \right)

So, the unit tangent vector is:

T(t)=(636+5t2,t36+5t2,2t36+5t2)\mathbf{T}(t) = \left( \frac{6}{\sqrt{36 + 5t^2}}, \frac{t}{\sqrt{36 + 5t^2}}, \frac{2t}{\sqrt{36 + 5t^2}} \right)

Part (b): Use the formula to find the curvature κ(t)\kappa(t)

The curvature κ(t)\kappa(t) is given by:

κ(t)=T(t)r(t)\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}

  1. Find T(t)\mathbf{T}'(t):

To find T(t)\mathbf{T}'(t), differentiate each component of T(t)\mathbf{T}(t) with respect to tt.

  • First component:

ddt(636+5t2)=6(5t(36+5t2)3/2)=30t(36+5t2)3/2\frac{d}{dt} \left( \frac{6}{\sqrt{36 + 5t^2}} \right) = 6 \cdot \left( \frac{-5t}{(36 + 5t^2)^{3/2}} \right) = \frac{-30t}{(36 + 5t^2)^{3/2}}

  • Second component:

ddt(t36+5t2)=36+5t2t5t36+5t2(36+5t2)=36(36+5t2)3/2\frac{d}{dt} \left( \frac{t}{\sqrt{36 + 5t^2}} \right) = \frac{\sqrt{36 + 5t^2} - t \cdot \frac{5t}{\sqrt{36 + 5t^2}}}{(36 + 5t^2)} = \frac{36}{(36 + 5t^2)^{3/2}}

  • Third component:

ddt(2t36+5t2)=236+5t22t5t36+5t2(36+5t2)=72(36+5t2)3/2\frac{d}{dt} \left( \frac{2t}{\sqrt{36 + 5t^2}} \right) = \frac{2\sqrt{36 + 5t^2} - 2t \cdot \frac{5t}{\sqrt{36 + 5t^2}}}{(36 + 5t^2)} = \frac{72}{(36 + 5t^2)^{3/2}}

  1. Find T(t)|\mathbf{T}'(t)|:

Now, we calculate the magnitude of T(t)\mathbf{T}'(t):

T(t)=(30t(36+5t2)3/2)2+(36(36+5t2)3/2)2+(72(36+5t2)3/2)2|\mathbf{T}'(t)| = \sqrt{\left( \frac{-30t}{(36 + 5t^2)^{3/2}} \right)^2 + \left( \frac{36}{(36 + 5t^2)^{3/2}} \right)^2 + \left( \frac{72}{(36 + 5t^2)^{3/2}} \right)^2}

Simplify the expression:

T(t)=900t2+1296+5184(36+5t2)3/2=1296+900t2(36+5t2)3/2|\mathbf{T}'(t)| = \frac{\sqrt{900t^2 + 1296 + 5184}}{(36 + 5t^2)^{3/2}} = \frac{\sqrt{1296 + 900t^2}}{(36 + 5t^2)^{3/2}}

  1. Curvature:

Finally, we plug in T(t)|\mathbf{T}'(t)| and r(t)|\mathbf{r}'(t)| into the formula for curvature:

κ(t)=1296+900t2(36+5t2)3/236+5t2=1296+900t2(36+5t2)2\kappa(t) = \frac{\frac{\sqrt{1296 + 900t^2}}{(36 + 5t^2)^{3/2}}}{\sqrt{36 + 5t^2}} = \frac{\sqrt{1296 + 900t^2}}{(36 + 5t^2)^2}

This gives the curvature κ(t)\kappa(t).


Would you like more details on the differentiation steps or simplifications? Here are five related questions to explore further:

  1. How is the unit normal vector N(t)\mathbf{N}(t) related to the tangent vector T(t)\mathbf{T}(t)?
  2. Can you find the torsion of the curve r(t)\mathbf{r}(t)?
  3. What is the geometric interpretation of the curvature κ(t)\kappa(t)?
  4. How would the problem change if the vector function were in three-dimensional space?
  5. What are some applications of curvature in physics and engineering?

Tip: Remember that curvature gives you the "bending" of a curve at a point, while the unit tangent vector indicates the direction of the curve's motion.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Tangent Vectors
Curvature
Differentiation

Formulas

T(t) = r'(t) / |r'(t)|
Curvature κ(t) = |T'(t)| / |r'(t)|
Magnitude of a vector: |v| = sqrt(v1^2 + v2^2 + v3^2)

Theorems

Differentiation of Vector Functions
Curvature Formula

Suitable Grade Level

Undergraduate Calculus