Math Problem Statement
find the curvature of (sin(t),cos(t),2t
Solution
To find the curvature of a curve parameterized by , we use the following formula:
Given the curve , let's calculate the curvature step by step.
Step 1: Compute the first derivative
We differentiate each component of :
Step 2: Compute the second derivative
Now, differentiate :
Step 3: Compute the cross product
Next, we calculate the cross product of and :
\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos(t) & -\sin(t) & 2 \\ -\sin(t) & -\cos(t) & 0 \end{vmatrix}$$ $$\mathbf{r}'(t) \times \mathbf{r}''(t) = \mathbf{i} \left( (-\sin(t))(0) - (-\cos(t))(2) \right) - \mathbf{j} \left( \cos(t)(0) - (-\sin(t))(2) \right) + \mathbf{k} \left( \cos(t)(-\cos(t)) - (-\sin(t))(-\sin(t)) \right)$$ Simplifying: $$\mathbf{r}'(t) \times \mathbf{r}''(t) = \mathbf{i}(2\cos(t)) - \mathbf{j}(2\sin(t)) + \mathbf{k}(-\cos^2(t) - \sin^2(t))$$ Using the identity $$\cos^2(t) + \sin^2(t) = 1$$, we get: $$\mathbf{r}'(t) \times \mathbf{r}''(t) = (2\cos(t), -2\sin(t), -1)$$ ### Step 4: Compute the magnitude of $$\mathbf{r}'(t) \times \mathbf{r}''(t)$$ The magnitude of the cross product is: $$|\mathbf{r}'(t) \times \mathbf{r}''(t)| = \sqrt{(2\cos(t))^2 + (-2\sin(t))^2 + (-1)^2}$$ $$|\mathbf{r}'(t) \times \mathbf{r}''(t)| = \sqrt{4\cos^2(t) + 4\sin^2(t) + 1}$$ $$|\mathbf{r}'(t) \times \mathbf{r}''(t)| = \sqrt{4(\cos^2(t) + \sin^2(t)) + 1} = \sqrt{4 + 1} = \sqrt{5}$$ ### Step 5: Compute the magnitude of $$\mathbf{r}'(t)$$ The magnitude of $$\mathbf{r}'(t)$$ is: $$|\mathbf{r}'(t)| = \sqrt{(\cos(t))^2 + (-\sin(t))^2 + (2)^2}$$ $$|\mathbf{r}'(t)| = \sqrt{\cos^2(t) + \sin^2(t) + 4} = \sqrt{1 + 4} = \sqrt{5}$$ ### StepAsk a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Vector Calculus
Curvature of Space Curves
Formulas
Curvature formula: κ = |r'(t) × r''(t)| / |r'(t)|^3
Cross product formula
Pythagorean identity: cos²(t) + sin²(t) = 1
Theorems
Vector Cross Product Theorem
Curvature of Parametric Curves
Suitable Grade Level
Undergraduate Level (Calculus III)
Related Recommendation
Find the Curvature of the Parametric Curve r(t) = (3cos(t), 2sin(t)) at t = π/3
Find the Curvature of the Curve r(t) = ⟨3t, -3t^4, 5t^3⟩ at t = -2
Curvature of the Curve r(t) = ⟨−6sin(t), 2t, 6cos(t)⟩
Find the Curvature of the Vector Function r(t) = <9t, t^2, t^3> at the Point (9, 1, 1)
Compute Curvature of Parametric Curve r(t) = (e^t * sqrt(2), t * sqrt(2)) at t=0