Math Problem Statement
Find the curvature of the curve <math xmlns="http://www.w3.org/1998/Math/MathML"> <mstyle displaystyle="true"> <mover> <mi>r</mi> <mo stretchy="false">→</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>〈</mo> <mn>3</mn> <mi>t</mi> <mo>,</mo> <mo>-</mo> <mn>3</mn> <msup> <mi>t</mi> <mrow> <mn>4</mn> </mrow> </msup> <mo>,</mo> <mn>5</mn> <msup> <mi>t</mi> <mrow> <mn>3</mn> </mrow> </msup> <mo>〉</mo> </mrow> </mstyle> </math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"> <mstyle displaystyle="true"> <mi>t</mi> <mo>=</mo> <mo>-</mo> <mn>2</mn> </mstyle> </math> .
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Calculus
Curvature of a Curve
Cross Product
Derivatives
Formulas
Curvature formula: κ(t) = |r'(t) × r''(t)| / |r'(t)|^3
First derivative: r'(t) = ⟨3, -12t^3, 15t^2⟩
Second derivative: r''(t) = ⟨0, -36t^2, 30t⟩
Cross product: r'(t) × r''(t)
Theorems
Frenet-Serret Formulas
Cross Product Properties
Curvature Formula
Suitable Grade Level
College Level (Calculus III or Vector Calculus)
Related Recommendation
Curvature of Vector Function r(t) = ⟨5t, t², t³⟩ at Point (5, 1, 1)
Find the Curvature of the Vector Function r(t) = <9t, t^2, t^3> at the Point (9, 1, 1)
Calculate Curvature of Curve rt=<-5t,-3t^4,-5t^5> at t=-1
Curvature Calculation for r(t) = (4t, 4t³/², -t²) at (4, 4, -1)
Curvature of the Parametric Curve (sin(t), cos(t), 2t)