Math Problem Statement

Find the curvature of the curve <math xmlns="http://www.w3.org/1998/Math/MathML"> <mstyle displaystyle="true"> <mover> <mi>r</mi> <mo stretchy="false"></mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo></mo> <mn>3</mn> <mi>t</mi> <mo>,</mo> <mo>-</mo> <mn>3</mn> <msup> <mi>t</mi> <mrow> <mn>4</mn> </mrow> </msup> <mo>,</mo> <mn>5</mn> <msup> <mi>t</mi> <mrow> <mn>3</mn> </mrow> </msup> <mo></mo> </mrow> </mstyle> </math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"> <mstyle displaystyle="true"> <mi>t</mi> <mo>=</mo> <mo>-</mo> <mn>2</mn> </mstyle> </math> .

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Curvature of a Curve
Cross Product
Derivatives

Formulas

Curvature formula: κ(t) = |r'(t) × r''(t)| / |r'(t)|^3
First derivative: r'(t) = ⟨3, -12t^3, 15t^2⟩
Second derivative: r''(t) = ⟨0, -36t^2, 30t⟩
Cross product: r'(t) × r''(t)

Theorems

Frenet-Serret Formulas
Cross Product Properties
Curvature Formula

Suitable Grade Level

College Level (Calculus III or Vector Calculus)