Math Problem Statement

Modal Rp2.000.000,00 ditabungkan dengan bunga majemuk 12%/tahun. Tentukan modal akhir (nilai akhir) yang diperoleh setelah 8 tahun!

Solution

I see that you've uploaded an image containing several mathematical problems. I will transcribe the text from the image and provide detailed solutions for each question.


Transcription from the image:

Latihan Soal

  1. Modal Rp2.000.000,00 ditabungkan dengan bunga majemuk 12%/tahun. Tentukan modal akhir (nilai akhir) yang diperoleh setelah 8 tahun!

  2. Modal sebesar Rp4.800.000,00 ditabungkan dengan suku bunga majemuk 3%/bulan selama 3,5 tahun. Tentukan modal akhirnya!

  3. Modal sebesar Rp4.000.000,00 ditabungkan dengan bunga majemuk 10%/4 bulan selama 5 tahun 4 bulan. Tentukan modal akhir!

  4. Modal sebesar Rp6.000.000,00 ditabungkan dengan bunga tunggal 15%/tahun selama 6 tahun. Tentukan modal akhir dan bunga yang diperoleh!

  5. Berapakah besar nilai akhir dari Rp100.000,00 yang dimasukkan ke dalam tabungan dengan bunga majemuk 6%/bulan selama 5 tahun? Berapakah nilai akhir dan bunga yang diperoleh benar?


Now, I will work on the first problem.

Problem 1:

  • Principal (Modal): Rp2.000.000,00
  • Interest Rate (Bunga): 12% per year (compound interest)
  • Time (Waktu): 8 years

For compound interest, the formula is: A=P(1+rn)ntA = P \left(1 + \frac{r}{n}\right)^{nt} Where:

  • AA = final amount (nilai akhir)
  • PP = principal (modal)
  • rr = annual interest rate (suku bunga tahunan)
  • nn = number of times the interest is compounded per year (in this case, it seems to be annually)
  • tt = time in years

Let me calculate the value.The final amount (nilai akhir) for the first problem, after 8 years of compounding at an interest rate of 12% per year, is approximately Rp4.951.926,35.

Would you like to proceed with the next problem or need more details on this one?

Here are 5 relative questions based on this solution:

  1. What would the final amount be if the interest rate were 10% per year instead of 12%?
  2. How does the frequency of compounding (monthly, quarterly, etc.) affect the final amount?
  3. What would happen if the principal amount was doubled?
  4. How would the final amount change if the time period was 10 years instead of 8 years?
  5. What is the difference between simple interest and compound interest in this context?

Tip: Compound interest grows faster because the interest is calculated on both the initial principal and the accumulated interest from previous periods.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Compound Interest
Exponential Growth

Formulas

A = P(1 + r/n)^(nt)

Theorems

Compound Interest Formula

Suitable Grade Level

Grades 9-12