Math Problem Statement
几位同学假期组成一个小组去某市旅游,该市有6座塔,他们的位置分别是A,B,C,D,E,F,同学们自由移动一段时间后,每位同学都发现,自己所在的位置智能看到位于A,B,C,D四座塔,看不到位于E和F的塔。已知1.同学们的位置和塔的位置视为在同一平面的点,且这些点不重合。2.A,B、C、D、E、F中任意三点不共线;3.看不到塔的唯一可能就是视线被其他塔挡住,例如,如果某同学所在位置P和A、B共线,且A在线段PB上,那么该同学就看不见位于B处的塔,请问这个旅游小组最多有多少名同学?请给出详细的解题过程
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Visibility Analysis
Convex Hull
Formulas
-
Theorems
Convex hull theorem
Suitable Grade Level
Grades 10-12
Related Recommendation
Maximizing the Number of Students in a Tour Group
Maximum Number of Students with Visibility Constraints in Geometry
Maximum Number of Students in a Group for Tower Visibility Problem
Maximum Number of Students with Restricted Visibility Problem in Geometry
Maximum Number of Students in a Group with Visibility Constraints in Geometry