Math Problem Statement
几位同学假期组成一个小组去某市旅游,该市有6座塔,它们的位置分别是A、B、C、D、E、F。同学们自由行动一段时间后,每位同学都发现,自己所在的位置只能看到位于A、B、C、D四座塔,而看不到E和F的塔,已知 (1)同学们的位置和塔的位置均视为同一个平面上的点,且这些点彼此不重合, (2)A、B、C、D、E、F中任意3点不共线 (3)看不到塔的唯一可能就是视线被其它的塔所阻挡,例如,如果某位同学所在的位置P和AB共线,且A在线段PB上,那么该同学就看不到位于B处的塔 请问,这个旅游小组最多可能有多少名同学? 请详细说明解题步骤以及思路。
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Convex polygon
Visibility problem
Formulas
-
Theorems
Convex hull theorem
Suitable Grade Level
Grades 11-12
Related Recommendation
Maximum Number of Students in a Group with Visibility Constraints in Geometry
Maximum Number of Students with Visibility Constraints in Geometry
Maximum Number of Students Observing Select Towers in Geometry
Maximum Number of Students with Restricted Visibility Problem in Geometry
Maximizing the Number of Students in a Tour Group