Math Problem Statement
几位同学假期组成一个小组去某市旅游,该市有6座塔,它们的位置分别是A、B、C、D、E、F。同学们自由行动一段时间后,每位同学都发现,自己所在的位置只能看到位于A、B、C、D四座塔,而看不到E和F的塔,已知
(1)同学们的位置和塔的位置均视为同一个平面上的点,且这些点彼此不重合。
(2)A、B、C、D、E、F中任意3点不共线。
(3)看不到塔的唯一可能就是视线被其它的塔所阻挡,例如,如果某位同学所在的位置P和A、B共线,且A在线段PB上,那么该同学就看不到位于B处的塔。
请问,这个旅游小组最多可能有多少名同学?
(A)3 (B)4(C)6(D)12
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Visibility
Convex Hull
Formulas
-
Theorems
Collinearity of points
Convex hull theorem
Suitable Grade Level
Grades 10-12
Related Recommendation
Maximum Number of Students in a Group for Tower Visibility Problem
Maximum Number of Students with Restricted Visibility Problem in Geometry
Maximizing the Number of Students in a Tour Group
Maximum Number of Students in a Tour Group with Viewing Constraints
Maximum Number of Students with Visibility Constraints in Geometry