Math Problem Statement

Найти \( \text{Proj}_{\vec{a}} \vec{b} \) если \( \vec{a} = (-3, 4, -3) \) и \( \vec{b} = (-3, -1, 1) \).

Solution

The image asks to find the projection of vector b\vec{b} onto vector a\vec{a}, denoted as Projab\text{Proj}_{\vec{a}} \vec{b}, where:

a=(3,4,3),b=(3,1,1).\vec{a} = (-3, 4, -3), \quad \vec{b} = (-3, -1, 1).

Formula for Vector Projection:

The projection of b\vec{b} onto a\vec{a} is calculated using the formula:

Projab=aba2a\text{Proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \cdot \vec{a}

Step 1: Calculate the Dot Product ab\vec{a} \cdot \vec{b}

Using the formula for the dot product:

ab=(3)(3)+(4)(1)+(3)(1)\vec{a} \cdot \vec{b} = (-3)(-3) + (4)(-1) + (-3)(1) ab=943=2\vec{a} \cdot \vec{b} = 9 - 4 - 3 = 2

Step 2: Find the Magnitude Squared of a\vec{a}, a2\|\vec{a}\|^2

The magnitude squared of a\vec{a} is:

a2=(3)2+42+(3)2\|\vec{a}\|^2 = (-3)^2 + 4^2 + (-3)^2 a2=9+16+9=34\|\vec{a}\|^2 = 9 + 16 + 9 = 34

Step 3: Compute the Scalar Coefficient

The scalar coefficient for the projection is:

aba2=234=117\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} = \frac{2}{34} = \frac{1}{17}

Step 4: Multiply by a\vec{a}

Now, multiply 117\frac{1}{17} by a=(3,4,3)\vec{a} = (-3, 4, -3):

Projab=117(3,4,3)\text{Proj}_{\vec{a}} \vec{b} = \frac{1}{17} \cdot (-3, 4, -3) Projab=(317,417,317)\text{Proj}_{\vec{a}} \vec{b} = \left(-\frac{3}{17}, \frac{4}{17}, -\frac{3}{17}\right)

Final Answer:

Projab=(317,417,317)\text{Proj}_{\vec{a}} \vec{b} = \left(-\frac{3}{17}, \frac{4}{17}, -\frac{3}{17}\right)

Would you like further clarification or detailed steps? Here are five related questions you may explore:

  1. How do you calculate the angle between two vectors using the dot product?
  2. What is the geometric meaning of a vector projection?
  3. How does the formula for projection change for unit vectors?
  4. Can the projection formula be extended to higher-dimensional spaces?
  5. How does the cross product relate to projections in 3D space?

Tip: Always normalize your direction vectors if you're looking for unit projections.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Projection
Dot Product
Vector Magnitude

Formulas

Projection formula: \( \text{Proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \cdot \vec{a} \)
Dot product formula: \( \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 \)
Magnitude squared formula: \( \|\vec{a}\|^2 = a_1^2 + a_2^2 + a_3^2 \)

Theorems

Properties of the dot product
Vector projection theorem

Suitable Grade Level

Grades 10-12