Math Problem Statement

Let \( \vec{b} = \langle 6, -6, -8 \rangle \) and \( \vec{a} = \langle -8, -3, 8 \rangle \). Compute the projection of \( \vec{b} \) onto \( \vec{a} \) and the orthogonal projection of \( \vec{b} \) onto \( \vec{a} \).

Solution

Let's solve the problem step-by-step.

1. Compute the projection of b\vec{b} onto a\vec{a}

Given: b=6,6,8anda=8,3,8\vec{b} = \langle 6, -6, -8 \rangle \quad \text{and} \quad \vec{a} = \langle -8, -3, 8 \rangle

The formula for the projection of b\vec{b} onto a\vec{a} is: projab=baaaa\text{proj}_{\vec{a}} \vec{b} = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a}

Step 1: Compute ba\vec{b} \cdot \vec{a}

The dot product ba\vec{b} \cdot \vec{a} is calculated as follows: ba=(6)(8)+(6)(3)+(8)(8)\vec{b} \cdot \vec{a} = (6)(-8) + (-6)(-3) + (-8)(8) Calculating each term: 6(8)=486 \cdot (-8) = -48 6(3)=18-6 \cdot (-3) = 18 88=64-8 \cdot 8 = -64 So, ba=48+1864=94\vec{b} \cdot \vec{a} = -48 + 18 - 64 = -94

Step 2: Compute aa\vec{a} \cdot \vec{a}

The dot product aa\vec{a} \cdot \vec{a} is: aa=(8)2+(3)2+82\vec{a} \cdot \vec{a} = (-8)^2 + (-3)^2 + 8^2 Calculating each term: (8)2=64(-8)^2 = 64 (3)2=9(-3)^2 = 9 82=648^2 = 64 So, aa=64+9+64=137\vec{a} \cdot \vec{a} = 64 + 9 + 64 = 137

Step 3: Plug values into the projection formula

projab=94137a\text{proj}_{\vec{a}} \vec{b} = \frac{-94}{137} \vec{a} Substitute a=8,3,8\vec{a} = \langle -8, -3, 8 \rangle: projab=941378,3,8\text{proj}_{\vec{a}} \vec{b} = \frac{-94}{137} \langle -8, -3, 8 \rangle Distribute 94137\frac{-94}{137} to each component: projab=948137,943137,948137\text{proj}_{\vec{a}} \vec{b} = \left\langle \frac{-94 \cdot -8}{137}, \frac{-94 \cdot -3}{137}, \frac{-94 \cdot 8}{137} \right\rangle Simplify each term: projab=752137,282137,752137\text{proj}_{\vec{a}} \vec{b} = \left\langle \frac{752}{137}, \frac{282}{137}, \frac{-752}{137} \right\rangle

2. Compute the orthogonal projection of b\vec{b} onto a\vec{a}

The orthogonal projection (or the component of b\vec{b} orthogonal to a\vec{a}) is: orthab=bprojab\text{orth}_{\vec{a}} \vec{b} = \vec{b} - \text{proj}_{\vec{a}} \vec{b} Substitute b=6,6,8\vec{b} = \langle 6, -6, -8 \rangle and projab=752137,282137,752137\text{proj}_{\vec{a}} \vec{b} = \left\langle \frac{752}{137}, \frac{282}{137}, \frac{-752}{137} \right\rangle: orthab=6,6,8752137,282137,752137\text{orth}_{\vec{a}} \vec{b} = \left\langle 6, -6, -8 \right\rangle - \left\langle \frac{752}{137}, \frac{282}{137}, \frac{-752}{137} \right\rangle This results in: orthab=6752137,6282137,8+752137\text{orth}_{\vec{a}} \vec{b} = \left\langle 6 - \frac{752}{137}, -6 - \frac{282}{137}, -8 + \frac{752}{137} \right\rangle Simplify each component: orthab=30137,1104137,360137\text{orth}_{\vec{a}} \vec{b} = \left\langle \frac{30}{137}, -\frac{1104}{137}, \frac{-360}{137} \right\rangle

Final Answers

  1. projab=752137,282137,752137\text{proj}_{\vec{a}} \vec{b} = \left\langle \frac{752}{137}, \frac{282}{137}, \frac{-752}{137} \right\rangle
  2. orthab=30137,1104137,360137\text{orth}_{\vec{a}} \vec{b} = \left\langle \frac{30}{137}, -\frac{1104}{137}, \frac{-360}{137} \right\rangle

Would you like further explanation or details on any step?


Related Questions:

  1. How do we interpret the projection of one vector onto another geometrically?
  2. How can the dot product help determine if two vectors are orthogonal?
  3. What are the properties of an orthogonal projection?
  4. How can vector projections be applied in physics?
  5. What is the relationship between the projection of b\vec{b} onto a\vec{a} and the angle between them?

Tip:

Remember that the orthogonal projection of a vector onto another shows the component of the vector perpendicular to the given direction.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Projections
Dot Product
Orthogonal Projection

Formulas

Projection formula: \( \text{proj}_{\vec{a}} \vec{b} = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a} \)
Orthogonal projection formula: \( \text{orth}_{\vec{a}} \vec{b} = \vec{b} - \text{proj}_{\vec{a}} \vec{b} \)

Theorems

Dot Product Properties
Orthogonality in Vectors

Suitable Grade Level

Grades 11-12