To solve this problem, we need to compute the projection of a ⃗ \vec{a} a onto b ⃗ \vec{b} b and the orthogonal complement of a ⃗ \vec{a} a with respect to b ⃗ \vec{b} b . The projection formula and the orthogonal component can be found as follows:
Given:
a ⃗ = ⟨ 7 , 3 , 6 ⟩ \vec{a} = \langle 7, 3, 6 \rangle a = ⟨ 7 , 3 , 6 ⟩
b ⃗ = ⟨ 3 , 1 , − 5 ⟩ \vec{b} = \langle 3, 1, -5 \rangle b = ⟨ 3 , 1 , − 5 ⟩
Step 1: Compute the Projection of a ⃗ \vec{a} a onto b ⃗ \vec{b} b
The formula for the projection of a ⃗ \vec{a} a onto b ⃗ \vec{b} b is:
proj b ⃗ a ⃗ = a ⃗ ⋅ b ⃗ b ⃗ ⋅ b ⃗ b ⃗ \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b} proj b a = b ⋅ b a ⋅ b b
Dot Product a ⃗ ⋅ b ⃗ \vec{a} \cdot \vec{b} a ⋅ b :
a ⃗ ⋅ b ⃗ = ( 7 ) ( 3 ) + ( 3 ) ( 1 ) + ( 6 ) ( − 5 ) = 21 + 3 − 30 = − 6 \vec{a} \cdot \vec{b} = (7)(3) + (3)(1) + (6)(-5) = 21 + 3 - 30 = -6 a ⋅ b = ( 7 ) ( 3 ) + ( 3 ) ( 1 ) + ( 6 ) ( − 5 ) = 21 + 3 − 30 = − 6
Dot Product b ⃗ ⋅ b ⃗ \vec{b} \cdot \vec{b} b ⋅ b :
b ⃗ ⋅ b ⃗ = ( 3 ) 2 + ( 1 ) 2 + ( − 5 ) 2 = 9 + 1 + 25 = 35 \vec{b} \cdot \vec{b} = (3)^2 + (1)^2 + (-5)^2 = 9 + 1 + 25 = 35 b ⋅ b = ( 3 ) 2 + ( 1 ) 2 + ( − 5 ) 2 = 9 + 1 + 25 = 35
Compute proj b ⃗ a ⃗ \text{proj}_{\vec{b}} \vec{a} proj b a :
proj b ⃗ a ⃗ = − 6 35 b ⃗ = − 6 35 ⟨ 3 , 1 , − 5 ⟩ \text{proj}_{\vec{b}} \vec{a} = \frac{-6}{35} \vec{b} = \frac{-6}{35} \langle 3, 1, -5 \rangle proj b a = 35 − 6 b = 35 − 6 ⟨ 3 , 1 , − 5 ⟩
= ⟨ − 18 35 , − 6 35 , 30 35 ⟩ = \left\langle \frac{-18}{35}, \frac{-6}{35}, \frac{30}{35} \right\rangle = ⟨ 35 − 18 , 35 − 6 , 35 30 ⟩
Simplifying the fractions, we get:
proj b ⃗ a ⃗ = ⟨ − 18 35 , − 6 35 , 6 7 ⟩ \text{proj}_{\vec{b}} \vec{a} = \left\langle -\frac{18}{35}, -\frac{6}{35}, \frac{6}{7} \right\rangle proj b a = ⟨ − 35 18 , − 35 6 , 7 6 ⟩
Step 2: Compute the Orthogonal Complement of a ⃗ \vec{a} a with respect to b ⃗ \vec{b} b
The orthogonal complement (or component) of a ⃗ \vec{a} a with respect to b ⃗ \vec{b} b is:
Orthogonal complement = a ⃗ − proj b ⃗ a ⃗ \text{Orthogonal complement} = \vec{a} - \text{proj}_{\vec{b}} \vec{a} Orthogonal complement = a − proj b a
Substitute a ⃗ = ⟨ 7 , 3 , 6 ⟩ \vec{a} = \langle 7, 3, 6 \rangle a = ⟨ 7 , 3 , 6 ⟩ and proj b ⃗ a ⃗ = ⟨ − 18 35 , − 6 35 , 6 7 ⟩ \text{proj}_{\vec{b}} \vec{a} = \left\langle -\frac{18}{35}, -\frac{6}{35}, \frac{6}{7} \right\rangle proj b a = ⟨ − 35 18 , − 35 6 , 7 6 ⟩ :
Orthogonal complement = ⟨ 7 , 3 , 6 ⟩ − ⟨ − 18 35 , − 6 35 , 6 7 ⟩ \text{Orthogonal complement} = \left\langle 7, 3, 6 \right\rangle - \left\langle -\frac{18}{35}, -\frac{6}{35}, \frac{6}{7} \right\rangle Orthogonal complement = ⟨ 7 , 3 , 6 ⟩ − ⟨ − 35 18 , − 35 6 , 7 6 ⟩
= ⟨ 7 + 18 35 , 3 + 6 35 , 6 − 6 7 ⟩ = \left\langle 7 + \frac{18}{35}, 3 + \frac{6}{35}, 6 - \frac{6}{7} \right\rangle = ⟨ 7 + 35 18 , 3 + 35 6 , 6 − 7 6 ⟩
Simplifying each component:
First component: 7 + 18 35 = 245 + 18 35 = 263 35 7 + \frac{18}{35} = \frac{245 + 18}{35} = \frac{263}{35} 7 + 35 18 = 35 245 + 18 = 35 263
Second component: 3 + 6 35 = 105 + 6 35 = 111 35 3 + \frac{6}{35} = \frac{105 + 6}{35} = \frac{111}{35} 3 + 35 6 = 35 105 + 6 = 35 111
Third component: 6 − 6 7 = 42 − 6 7 = 36 7 6 - \frac{6}{7} = \frac{42 - 6}{7} = \frac{36}{7} 6 − 7 6 = 7 42 − 6 = 7 36
So, the orthogonal complement is:
Orthogonal complement = ⟨ 263 35 , 111 35 , 36 7 ⟩ \text{Orthogonal complement} = \left\langle \frac{263}{35}, \frac{111}{35}, \frac{36}{7} \right\rangle Orthogonal complement = ⟨ 35 263 , 35 111 , 7 36 ⟩
Final Answer:
Projection of a ⃗ \vec{a} a onto b ⃗ \vec{b} b :
proj b ⃗ a ⃗ = ⟨ − 18 35 , − 6 35 , 6 7 ⟩ \text{proj}_{\vec{b}} \vec{a} = \left\langle -\frac{18}{35}, -\frac{6}{35}, \frac{6}{7} \right\rangle proj b a = ⟨ − 35 18 , − 35 6 , 7 6 ⟩
Orthogonal complement :
Orthogonal complement = ⟨ 263 35 , 111 35 , 36 7 ⟩ \text{Orthogonal complement} = \left\langle \frac{263}{35}, \frac{111}{35}, \frac{36}{7} \right\rangle Orthogonal complement = ⟨ 35 263 , 35 111 , 7 36 ⟩
Would you like further details on any specific step?
Here are some additional questions to deepen your understanding:
How would the process change if the vector b ⃗ \vec{b} b were a unit vector?
Can the projection of a ⃗ \vec{a} a onto b ⃗ \vec{b} b ever equal a ⃗ \vec{a} a itself? Under what conditions?
What does the orthogonal complement represent geometrically?
How would you find the angle between a ⃗ \vec{a} a and b ⃗ \vec{b} b using the dot product?
What would the result be if a ⃗ \vec{a} a and b ⃗ \vec{b} b were perpendicular?
Tip: The orthogonal complement of a ⃗ \vec{a} a with respect to b ⃗ \vec{b} b is always perpendicular to b ⃗ \vec{b} b .