Math Problem Statement

Let \( \vec{a} = \langle 7, 3, 6 \rangle \) and \( \vec{b} = \langle 3, 1, -5 \rangle \). Compute the projection of \( \vec{a} \) onto \( \vec{b} \) and the vector component of \( \vec{a} \) orthogonal to \( \vec{b} \).

Solution

To solve this problem, we need to compute the projection of a\vec{a} onto b\vec{b} and the orthogonal complement of a\vec{a} with respect to b\vec{b}. The projection formula and the orthogonal component can be found as follows:

Given:

a=7,3,6\vec{a} = \langle 7, 3, 6 \rangle b=3,1,5\vec{b} = \langle 3, 1, -5 \rangle

Step 1: Compute the Projection of a\vec{a} onto b\vec{b}

The formula for the projection of a\vec{a} onto b\vec{b} is: projba=abbbb\text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b}

  1. Dot Product ab\vec{a} \cdot \vec{b}: ab=(7)(3)+(3)(1)+(6)(5)=21+330=6\vec{a} \cdot \vec{b} = (7)(3) + (3)(1) + (6)(-5) = 21 + 3 - 30 = -6

  2. Dot Product bb\vec{b} \cdot \vec{b}: bb=(3)2+(1)2+(5)2=9+1+25=35\vec{b} \cdot \vec{b} = (3)^2 + (1)^2 + (-5)^2 = 9 + 1 + 25 = 35

  3. Compute projba\text{proj}_{\vec{b}} \vec{a}: projba=635b=6353,1,5\text{proj}_{\vec{b}} \vec{a} = \frac{-6}{35} \vec{b} = \frac{-6}{35} \langle 3, 1, -5 \rangle =1835,635,3035= \left\langle \frac{-18}{35}, \frac{-6}{35}, \frac{30}{35} \right\rangle Simplifying the fractions, we get: projba=1835,635,67\text{proj}_{\vec{b}} \vec{a} = \left\langle -\frac{18}{35}, -\frac{6}{35}, \frac{6}{7} \right\rangle

Step 2: Compute the Orthogonal Complement of a\vec{a} with respect to b\vec{b}

The orthogonal complement (or component) of a\vec{a} with respect to b\vec{b} is: Orthogonal complement=aprojba\text{Orthogonal complement} = \vec{a} - \text{proj}_{\vec{b}} \vec{a}

Substitute a=7,3,6\vec{a} = \langle 7, 3, 6 \rangle and projba=1835,635,67\text{proj}_{\vec{b}} \vec{a} = \left\langle -\frac{18}{35}, -\frac{6}{35}, \frac{6}{7} \right\rangle: Orthogonal complement=7,3,61835,635,67\text{Orthogonal complement} = \left\langle 7, 3, 6 \right\rangle - \left\langle -\frac{18}{35}, -\frac{6}{35}, \frac{6}{7} \right\rangle =7+1835,3+635,667= \left\langle 7 + \frac{18}{35}, 3 + \frac{6}{35}, 6 - \frac{6}{7} \right\rangle

Simplifying each component:

  1. First component: 7+1835=245+1835=263357 + \frac{18}{35} = \frac{245 + 18}{35} = \frac{263}{35}
  2. Second component: 3+635=105+635=111353 + \frac{6}{35} = \frac{105 + 6}{35} = \frac{111}{35}
  3. Third component: 667=4267=3676 - \frac{6}{7} = \frac{42 - 6}{7} = \frac{36}{7}

So, the orthogonal complement is: Orthogonal complement=26335,11135,367\text{Orthogonal complement} = \left\langle \frac{263}{35}, \frac{111}{35}, \frac{36}{7} \right\rangle

Final Answer:

  1. Projection of a\vec{a} onto b\vec{b}: projba=1835,635,67\text{proj}_{\vec{b}} \vec{a} = \left\langle -\frac{18}{35}, -\frac{6}{35}, \frac{6}{7} \right\rangle

  2. Orthogonal complement: Orthogonal complement=26335,11135,367\text{Orthogonal complement} = \left\langle \frac{263}{35}, \frac{111}{35}, \frac{36}{7} \right\rangle

Would you like further details on any specific step?


Here are some additional questions to deepen your understanding:

  1. How would the process change if the vector b\vec{b} were a unit vector?
  2. Can the projection of a\vec{a} onto b\vec{b} ever equal a\vec{a} itself? Under what conditions?
  3. What does the orthogonal complement represent geometrically?
  4. How would you find the angle between a\vec{a} and b\vec{b} using the dot product?
  5. What would the result be if a\vec{a} and b\vec{b} were perpendicular?

Tip: The orthogonal complement of a\vec{a} with respect to b\vec{b} is always perpendicular to b\vec{b}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Projection
Orthogonal Complement

Formulas

Projection formula: \( \text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}} \vec{b} \)
Orthogonal complement: \( \vec{a} - \text{proj}_{\vec{b}} \vec{a} \)

Theorems

Vector Dot Product
Orthogonality in Vectors

Suitable Grade Level

Grades 10-12