Math Problem Statement

Let **a** = ⟨-5, -1, 1⟩ and **b** = ⟨3, -1, -2⟩. Find the projection of **b** onto **a**.

Solution

To find the projection of b onto a, denoted as projab\text{proj}_{\mathbf{a}} \mathbf{b}, we use the formula:

projab=abaaa\text{proj}_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}

Step 1: Calculate ab\mathbf{a} \cdot \mathbf{b}

The dot product ab\mathbf{a} \cdot \mathbf{b} is calculated as follows: ab=(5)(3)+(1)(1)+(1)(2)=15+12=16\mathbf{a} \cdot \mathbf{b} = (-5)(3) + (-1)(-1) + (1)(-2) = -15 + 1 - 2 = -16

Step 2: Calculate aa\mathbf{a} \cdot \mathbf{a}

The dot product aa\mathbf{a} \cdot \mathbf{a} is: aa=(5)2+(1)2+(1)2=25+1+1=27\mathbf{a} \cdot \mathbf{a} = (-5)^2 + (-1)^2 + (1)^2 = 25 + 1 + 1 = 27

Step 3: Substitute into the formula

Now we can find projab\text{proj}_{\mathbf{a}} \mathbf{b} by substituting these values: projab=1627a=16275,1,1\text{proj}_{\mathbf{a}} \mathbf{b} = \frac{-16}{27} \mathbf{a} = \frac{-16}{27} \langle -5, -1, 1 \rangle

Step 4: Distribute the scalar

Now, multiply each component of a\mathbf{a} by 1627\frac{-16}{27}: projab=1627(5),1627(1),16271\text{proj}_{\mathbf{a}} \mathbf{b} = \left\langle \frac{-16}{27} \cdot (-5), \frac{-16}{27} \cdot (-1), \frac{-16}{27} \cdot 1 \right\rangle

Calculating each component:

  1. 1627(5)=8027\frac{-16}{27} \cdot (-5) = \frac{80}{27}
  2. 1627(1)=1627\frac{-16}{27} \cdot (-1) = \frac{16}{27}
  3. 16271=1627\frac{-16}{27} \cdot 1 = \frac{-16}{27}

Final Answer

projab=8027,1627,1627\text{proj}_{\mathbf{a}} \mathbf{b} = \left\langle \frac{80}{27}, \frac{16}{27}, \frac{-16}{27} \right\rangle

Let me know if you have questions or want further details.


Related Questions

  1. How do you calculate the angle between two vectors using the dot product?
  2. What is the difference between the projection of b onto a and a onto b?
  3. Can projections result in a vector with larger magnitude than the original vector?
  4. How would you find the magnitude of the projection vector?
  5. How do you interpret a negative result in the dot product of two vectors?

Tip

The projection of one vector onto another always lies along the direction of the vector it's being projected onto.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Projection
Dot Product
Vector Scalar Multiplication

Formulas

Projection formula: proj_a b = (a · b / a · a) * a
Dot product formula: a · b = a1 * b1 + a2 * b2 + a3 * b3

Theorems

Projection theorem for vectors

Suitable Grade Level

Grades 11-12