Math Problem Statement

If r = cos(ωt)a + sin(ωt)b, where a and b are constant vectors, ω is a constant, and r is a vector function, then r × dr/dt = ?

Solution

The given problem asks to evaluate r×drdt\mathbf{r} \times \frac{d\mathbf{r}}{dt}, where:

r=cos(ωt)a+sin(ωt)b,\mathbf{r} = \cos(\omega t) \mathbf{a} + \sin(\omega t) \mathbf{b},

and a\mathbf{a} and b\mathbf{b} are constant vectors.


Step 1: Calculate drdt\frac{d\mathbf{r}}{dt}

drdt=ddt[cos(ωt)a+sin(ωt)b].\frac{d\mathbf{r}}{dt} = \frac{d}{dt} \left[\cos(\omega t) \mathbf{a} + \sin(\omega t) \mathbf{b}\right].

Using the derivatives of cos(ωt)\cos(\omega t) and sin(ωt)\sin(\omega t): drdt=ωsin(ωt)a+ωcos(ωt)b.\frac{d\mathbf{r}}{dt} = -\omega \sin(\omega t) \mathbf{a} + \omega \cos(\omega t) \mathbf{b}.


Step 2: Compute r×drdt\mathbf{r} \times \frac{d\mathbf{r}}{dt}

Now substitute r\mathbf{r} and drdt\frac{d\mathbf{r}}{dt} into the cross product formula:

[ \mathbf{r} \times \frac{d\mathbf{r}}{dt} = \left[\cos(\omega t) \mathbf{a} + \sin(\omega t) \mathbf{b}\right] \times \left[-\omega \sin(\omega t) \mathbf{a} + \omega \cos(\omega t) \mathbf{b}\right]. ]

Using the distributive property of the cross product: [ \mathbf{r} \times \frac{d\mathbf{r}}{dt} = \cos(\omega t) \left[-\omega \sin(\omega t) (\mathbf{a} \times \mathbf{a}) + \omega \cos(\omega t) (\mathbf{a} \times \mathbf{b})\right]

  • \sin(\omega t) \left[-\omega \sin(\omega t) (\mathbf{b} \times \mathbf{a}) + \omega \cos(\omega t) (\mathbf{b} \times \mathbf{b})\right]. ]

Step 3: Simplify using vector properties

  1. The cross product of a vector with itself is zero: a×a=0,b×b=0.\mathbf{a} \times \mathbf{a} = \mathbf{0}, \quad \mathbf{b} \times \mathbf{b} = \mathbf{0}.

  2. The cross product is anti-commutative: b×a=(a×b).\mathbf{b} \times \mathbf{a} = - (\mathbf{a} \times \mathbf{b}).

Substituting these into the expression:

+ \sin(\omega t) \omega \sin(\omega t) (-\mathbf{a} \times \mathbf{b}).$$ Factor out $$\omega (\mathbf{a} \times \mathbf{b})$$: $$\mathbf{r} \times \frac{d\mathbf{r}}{dt} = \omega (\mathbf{a} \times \mathbf{b}) \left[\cos^2(\omega t) - \sin^2(\omega t)\right].$$ --- ### Step 4: Simplify further Using the trigonometric identity: $$\cos^2(\omega t) - \sin^2(\omega t) = \cos(2\omega t),$$ the expression becomes: $$\mathbf{r} \times \frac{d\mathbf{r}}{dt} = \omega \cos(2\omega t) (\mathbf{a} \times \mathbf{b}).$$ --- ### Step 5: Analyze the result From the options provided, the cross product involves $$\mathbf{a} \times \mathbf{b}$$, so the correct answer is: $$\boxed{\text{(b) } \mathbf{a} \times \mathbf{b}}$$ --- Would you like more details or further clarifications? --- ### Relative Questions: 1. What is the physical significance of a cross product in vector mathematics? 2. How does the anti-commutative property of the cross product simplify vector expressions? 3. Why is the derivative of $$\cos(\omega t)$$ equal to $$-\omega \sin(\omega t)$$? 4. What happens if $$\mathbf{a}$$ and $$\mathbf{b}$$ are not constant vectors? 5. How would the problem change if $$\mathbf{r} = \cos(\omega t) \mathbf{a} + \cos(\omega t) \mathbf{b}$$? --- ### Tip: Always remember that the cross product of two parallel vectors is zero, which helps simplify many vector calculus problems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Cross Product
Differentiation of Vector Functions
Trigonometric Identities

Formulas

Cross product: A × B = |A||B|sin(θ)n̂
Derivative of cos(ωt): d/dt[cos(ωt)] = -ωsin(ωt)
Derivative of sin(ωt): d/dt[sin(ωt)] = ωcos(ωt)

Theorems

Properties of Cross Product
Trigonometric Pythagorean Identities

Suitable Grade Level

Grades 11-12 or Introductory Undergraduate Level