Math Problem Statement

if r vector =ti cap -t^2jcap+sintk cap , find dr vector/dt , | dr vector /dt| at t= theta

Solution

To solve the problem, let’s find both the derivative of the given vector r\vec{r} with respect to tt and the magnitude of the derivative at t=θt = \theta.

Step 1: Given vector function

r(t)=ti^t2j^+sintk^.\vec{r}(t) = t \hat{i} - t^2 \hat{j} + \sin t \hat{k}.

Step 2: Differentiate r(t)\vec{r}(t) with respect to tt

drdt=ddt(t)i^ddt(t2)j^+ddt(sint)k^.\frac{d\vec{r}}{dt} = \frac{d}{dt}(t) \hat{i} - \frac{d}{dt}(t^2) \hat{j} + \frac{d}{dt}(\sin t) \hat{k}. Computing each term:

  • ddt(t)=1\frac{d}{dt}(t) = 1,
  • ddt(t2)=2t\frac{d}{dt}(t^2) = 2t,
  • ddt(sint)=cost\frac{d}{dt}(\sin t) = \cos t.

Thus: drdt=i^2tj^+costk^.\frac{d\vec{r}}{dt} = \hat{i} - 2t \hat{j} + \cos t \hat{k}.

Step 3: Find the magnitude of drdt\frac{d\vec{r}}{dt} at t=θt = \theta

The magnitude of drdt\frac{d\vec{r}}{dt} is: drdt=(1)2+(2t)2+(cost)2.\left|\frac{d\vec{r}}{dt}\right| = \sqrt{\left(1\right)^2 + \left(-2t\right)^2 + \left(\cos t\right)^2}.

Substitute t=θt = \theta: drdt=1+(2θ)2+(cosθ)2.\left|\frac{d\vec{r}}{dt}\right| = \sqrt{1 + (-2\theta)^2 + (\cos \theta)^2}.

Simplify: drdt=1+4θ2+cos2θ.\left|\frac{d\vec{r}}{dt}\right| = \sqrt{1 + 4\theta^2 + \cos^2 \theta}.

Final Results:

  1. Derivative of r\vec{r} with respect to tt: drdt=i^2tj^+costk^.\frac{d\vec{r}}{dt} = \hat{i} - 2t \hat{j} + \cos t \hat{k}.

  2. Magnitude of drdt\frac{d\vec{r}}{dt} at t=θt = \theta: drdt=1+4θ2+cos2θ.\left|\frac{d\vec{r}}{dt}\right| = \sqrt{1 + 4\theta^2 + \cos^2 \theta}.

Would you like more details or examples on this?


5 Related Questions:

  1. How is the magnitude of a vector derivative interpreted geometrically?
  2. What happens to drdt|\frac{d\vec{r}}{dt}| when θ=0\theta = 0?
  3. How do you compute the unit tangent vector to r(t)\vec{r}(t)?
  4. What are the physical applications of drdt\frac{d\vec{r}}{dt} in mechanics?
  5. How does the magnitude of drdt\frac{d\vec{r}}{dt} change as θ\theta increases?

Tip: For parametric vector functions, the derivative drdt\frac{d\vec{r}}{dt} represents the velocity vector, and its magnitude gives the speed of the motion.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Derivatives
Magnitude of Vectors
Trigonometric Functions

Formulas

r(t) = t * i + (-t^2) * j + sin(t) * k
dr/dt = (d/dt)(t * i) + (d/dt)(-t^2 * j) + (d/dt)(sin(t) * k)
|dr/dt| = sqrt((dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2)

Theorems

Chain Rule for Derivatives
Vector Derivative
Magnitude of a Vector

Suitable Grade Level

Grades 11-12