Math Problem Statement

We now let ( ) ( ), ( ),0 ( ) cos ( ), ( )sin ( ),0r t x t y t r t t r t t    , so that the orbital plane is the xy-plane. Expand the cross product to show that 2 r v d r dt 

Solution

To show that r×v=r2dθdtz^\mathbf{r} \times \mathbf{v} = r^2 \frac{d\theta}{dt} \hat{z}, where r(t)\mathbf{r}(t) and v(t)\mathbf{v}(t) are defined in the xy-plane, let's proceed with the given definitions:

  1. Position Vector:
    r(t)=(x(t),y(t),0)=(r(t)cosθ(t),r(t)sinθ(t),0)\mathbf{r}(t) = (x(t), y(t), 0) = (r(t)\cos\theta(t), r(t)\sin\theta(t), 0).

  2. Velocity Vector:
    v(t)=drdt=(dxdt,dydt,0)\mathbf{v}(t) = \frac{d\mathbf{r}}{dt} = \left( \frac{dx}{dt}, \frac{dy}{dt}, 0 \right).

We start by finding v(t)\mathbf{v}(t).

1. Calculate the Velocity Vector v(t)\mathbf{v}(t):

v(t)=ddt(r(t)cosθ(t),r(t)sinθ(t),0).\mathbf{v}(t) = \frac{d}{dt}(r(t)\cos\theta(t), r(t)\sin\theta(t), 0). Using the product rule for differentiation:

  • dxdt=ddt(r(t)cosθ(t))=drdtcosθrsinθdθdt\frac{dx}{dt} = \frac{d}{dt} (r(t)\cos\theta(t)) = \frac{dr}{dt} \cos\theta - r \sin\theta \frac{d\theta}{dt}.

  • dydt=ddt(r(t)sinθ(t))=drdtsinθ+rcosθdθdt\frac{dy}{dt} = \frac{d}{dt} (r(t)\sin\theta(t)) = \frac{dr}{dt} \sin\theta + r \cos\theta \frac{d\theta}{dt}.

Thus, the velocity vector is: v(t)=(drdtcosθrsinθdθdt,drdtsinθ+rcosθdθdt,0).\mathbf{v}(t) = \left( \frac{dr}{dt} \cos\theta - r \sin\theta \frac{d\theta}{dt}, \frac{dr}{dt} \sin\theta + r \cos\theta \frac{d\theta}{dt}, 0 \right).

2. Calculate the Cross Product r×v\mathbf{r} \times \mathbf{v}:

The cross product of r(t)\mathbf{r}(t) and v(t)\mathbf{v}(t) is given by:

\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ r\cos\theta & r\sin\theta & 0 \\ \frac{dr}{dt} \cos\theta - r \sin\theta \frac{d\theta}{dt} & \frac{dr}{dt} \sin\theta + r \cos\theta \frac{d\theta}{dt} & 0 \end{vmatrix}.$$ Evaluating this determinant, we get: $$\mathbf{r} \times \mathbf{v} = \hat{k} \left[ r\cos\theta \left( \frac{dr}{dt} \sin\theta + r \cos\theta \frac{d\theta}{dt} \right) - r\sin\theta \left( \frac{dr}{dt} \cos\theta - r \sin\theta \frac{d\theta}{dt} \right) \right].$$ Simplifying the expression inside the brackets: $$\mathbf{r} \times \mathbf{v} = \hat{k} \left[ r\frac{dr}{dt} \cos\theta \sin\theta + r^2 \cos^2 \theta \frac{d\theta}{dt} - r\frac{dr}{dt} \cos\theta \sin\theta + r^2 \sin^2 \theta \frac{d\theta}{dt} \right].$$ Further simplification leads to: $$\mathbf{r} \times \mathbf{v} = \hat{k} \left[ r^2 \cos^2 \theta \frac{d\theta}{dt} + r^2 \sin^2 \theta \frac{d\theta}{dt} \right].$$ Since $$\cos^2\theta + \sin^2\theta = 1$$, we obtain: $$\mathbf{r} \times \mathbf{v} = \hat{k} \left[ r^2 \frac{d\theta}{dt} \right].$$ ### Final Result: $$\mathbf{r} \times \mathbf{v} = r^2 \frac{d\theta}{dt} \hat{z}.$$ This shows the desired result. ### Do you have any questions or need further clarification? Here are 5 related questions: 1. What does the magnitude of $$\mathbf{r} \times \mathbf{v}$$ represent in orbital mechanics? 2. How does the cross product $$\mathbf{r} \times \mathbf{v}$$ relate to angular momentum? 3. How would the expression change if the motion were not restricted to the xy-plane? 4. What is the physical significance of the term $$r^2 \frac{d\theta}{dt}$$? 5. How do we interpret the derivative $$\frac{d\theta}{dt}$$ in terms of orbital motion? **Tip:** Understanding cross products in vector calculus is crucial for solving problems involving angular momentum and rotational dynamics.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Cross Product
Orbital Mechanics

Formulas

r(t) = (r(t)cos(θ), r(t)sin(θ), 0)
v(t) = (dr/dt cos(θ) - r sin(θ) dθ/dt, dr/dt sin(θ) + r cos(θ) dθ/dt, 0)
r × v = r^2 dθ/dt ẑ

Theorems

Cross Product Theorem
Product Rule for Differentiation
Trigonometric Identity cos²θ + sin²θ = 1

Suitable Grade Level

Undergraduate