Math Problem Statement

Un albergue universitario aloja a 100 estudiantes, cada uno de los cuales es susceptible a contraer cierta infección viral. Un modelo matemático simple supone que durante el curso de una epidemia la tasa de cambio con respecto al tiempo del número de estudiantes contagiados I es proporcional al número de estudiantes contagiados y también al número de alumnos no contagiados. Si en el tiempo t = 0 un solo estudiante está contagiado, demuestre que el número de estudiantes contagiados en el tiempo t es: I = (100e^{100kt})/(99 + e^{100kt})

Solution

This problem describes an epidemic model where 100 students are susceptible to an infection. The goal is to demonstrate that the number of infected students at time tt follows the given expression:

I(t)=100e100kt99+e100ktI(t) = \frac{100 e^{100kt}}{99 + e^{100kt}}

Given Information:

  • There are 100 students.
  • At t=0t = 0, one student is infected.
  • The rate of change in the number of infected students II is proportional to the number of infected and non-infected students. This is a typical logistic growth model.

Steps to Demonstrate the Equation:

1. Formulation of the Differential Equation:

Let I(t)I(t) represent the number of infected students at time tt. The rate of change of I(t)I(t) is proportional to both the number of infected students and the number of uninfected students:

dIdt=kI(t)(NI(t))\frac{dI}{dt} = k I(t) \left( N - I(t) \right)

Where:

  • N=100N = 100 (total number of students),
  • kk is a constant (infection rate),
  • I(t)I(t) is the number of infected students at time tt.

So, the equation becomes:

dIdt=kI(t)(100I(t))\frac{dI}{dt} = k I(t) (100 - I(t))

This is a standard logistic differential equation.

2. Solving the Logistic Equation:

To solve this equation, we separate the variables:

1I(t)(100I(t))dI=kdt\frac{1}{I(t)(100 - I(t))} \, dI = k \, dt

Now we integrate both sides. This step involves partial fraction decomposition on the left-hand side.

3. Partial Fraction Decomposition:

We decompose 1I(t)(100I(t))\frac{1}{I(t)(100 - I(t))}:

1I(t)(100I(t))=AI(t)+B100I(t)\frac{1}{I(t)(100 - I(t))} = \frac{A}{I(t)} + \frac{B}{100 - I(t)}

Multiplying both sides by I(t)(100I(t))I(t)(100 - I(t)), we get:

1=A(100I(t))+BI(t)1 = A(100 - I(t)) + B I(t)

This simplifies to:

1=100A+(BA)I(t)1 = 100A + (B - A)I(t)

From here, we can solve for AA and BB:

  • 100A=1    A=1100100A = 1 \implies A = \frac{1}{100},
  • BA=0    B=A=1100B - A = 0 \implies B = A = \frac{1}{100}.

So, the partial fractions are:

1I(t)(100I(t))=1100I(t)+1100(100I(t))\frac{1}{I(t)(100 - I(t))} = \frac{1}{100 I(t)} + \frac{1}{100(100 - I(t))}

4. Integrating Both Sides:

We now integrate both sides:

(1100I(t)+1100(100I(t)))dI=kdt\int \left( \frac{1}{100 I(t)} + \frac{1}{100(100 - I(t))} \right) \, dI = \int k \, dt

This gives:

1100lnI(t)1100ln100I(t)=kt+C\frac{1}{100} \ln |I(t)| - \frac{1}{100} \ln |100 - I(t)| = kt + C

Multiplying by 100:

lnI(t)100I(t)=100kt+C\ln \left| \frac{I(t)}{100 - I(t)} \right| = 100kt + C'

Exponentiating both sides:

I(t)100I(t)=e100kt+C=Ae100kt\frac{I(t)}{100 - I(t)} = e^{100kt + C'} = A e^{100kt}

Where A=eCA = e^{C'} is a constant.

5. Solving for I(t)I(t):

Now, solve for I(t)I(t):

I(t)=Ae100kt(100I(t))1I(t) = \frac{A e^{100kt} (100 - I(t))}{1}

At t=0t = 0, I(0)=1I(0) = 1, so we use this condition to determine AA.

[ I(0) = \frac{Ae^{100k(0)} \cdot 100}{99 + e^{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
Logistic Growth Model

Formulas

dI/dt = k I(t) (N - I(t))
Logistic growth solution I(t) = (100e^{100kt}) / (99 + e^{100kt})

Theorems

Logistic Growth Model
Separation of Variables

Suitable Grade Level

University level (Undergraduate Math)