Math Problem Statement

Ширењето на една епидемија може да се моделира со функцијата f(t) = 120,000 / (1 + A * e^(-k*t)), каде t ја дава состојбата на заразени по месеци. Во почетната фаза (нултиот месец) заразени се 120 луѓе, а по еден месец има 1000 заразени. Да се пресметаат коефициентите A и k. Епидемијата се шири во град каде што ризичната популација брои 120,000 жители. По колку месеци ќе бидат заразени половина од ризичната популација? Да се скицира графикот на функцијата.

Solution

The problem involves modeling the spread of an epidemic using a logistic function:

f(t)=120,0001+Aekt,f(t) = \frac{120,000}{1 + A e^{-kt}}, where tt is the time (in months), AA and kk are constants to be determined, and f(t)f(t) represents the number of infected people at time tt.

Problem Breakdown:

  1. Part (a):

    • Initial conditions are:
      • At t=0t = 0, f(0)=120f(0) = 120 (120 infected people at the start).
      • At t=1t = 1, f(1)=1000f(1) = 1000 (1000 infected people after 1 month).
    • Using these conditions, calculate AA and kk.
  2. Part (b):

    • Total population at risk is 120,000120,000.
    • Determine tt when half the population is infected (f(t)=60,000f(t) = 60,000).
  3. Part (c):

    • Sketch the graph of f(t)f(t), showing the logistic growth curve.

I will now solve this step by step.


Solution: Part (a)

Step 1: Use t=0t = 0, f(0)=120f(0) = 120:

Substitute t=0t = 0 into the equation: f(0)=120,0001+Ae0=120,0001+A.f(0) = \frac{120,000}{1 + A e^{0}} = \frac{120,000}{1 + A}. Equating f(0)f(0) to 120: 120=120,0001+A.120 = \frac{120,000}{1 + A}. Solve for AA: 1+A=120,0001201+A=1000A=999.1 + A = \frac{120,000}{120} \quad \Rightarrow \quad 1 + A = 1000 \quad \Rightarrow \quad A = 999.

Step 2: Use t=1t = 1, f(1)=1000f(1) = 1000:

Substitute t=1t = 1 into the equation: f(1)=120,0001+999ek.f(1) = \frac{120,000}{1 + 999 e^{-k}}. Equating f(1)f(1) to 1000: 1000=120,0001+999ek.1000 = \frac{120,000}{1 + 999 e^{-k}}. Rearrange to isolate eke^{-k}: 1+999ek=120,00010001+999ek=120.1 + 999 e^{-k} = \frac{120,000}{1000} \quad \Rightarrow \quad 1 + 999 e^{-k} = 120. 999ek=119ek=119999.999 e^{-k} = 119 \quad \Rightarrow \quad e^{-k} = \frac{119}{999}. Take the natural logarithm: k=ln(119999)k=ln(119999).-k = \ln\left(\frac{119}{999}\right) \quad \Rightarrow \quad k = -\ln\left(\frac{119}{999}\right). Simplify: k=ln(999119).k = \ln\left(\frac{999}{119}\right). Numerical approximation: kln(8.395)2.13.k \approx \ln(8.395) \approx 2.13.

Thus, A=999A = 999 and k2.13k \approx 2.13.


Solution: Part (b)

We need to find tt when f(t)=60,000f(t) = 60,000: 60,000=120,0001+999e2.13t.60,000 = \frac{120,000}{1 + 999 e^{-2.13 t}}. Simplify: 1+999e2.13t=120,00060,0001+999e2.13t=2.1 + 999 e^{-2.13 t} = \frac{120,000}{60,000} \quad \Rightarrow \quad 1 + 999 e^{-2.13 t} = 2. 999e2.13t=1e2.13t=1999.999 e^{-2.13 t} = 1 \quad \Rightarrow \quad e^{-2.13 t} = \frac{1}{999}. Take the natural logarithm: 2.13t=ln(1999)t=ln(1999)2.13.-2.13 t = \ln\left(\frac{1}{999}\right) \quad \Rightarrow \quad t = -\frac{\ln\left(\frac{1}{999}\right)}{2.13}. Simplify: t=ln(999)2.13.t = \frac{\ln(999)}{2.13}. Numerical approximation: tln(999)2.136.912.133.24.t \approx \frac{\ln(999)}{2.13} \approx \frac{6.91}{2.13} \approx 3.24. Thus, half the population is infected after approximately 3.24 months.


Solution: Part (c)

The graph of the logistic function is a sigmoid curve. Key points:

  • Starts at f(0)=120f(0) = 120.
  • Approaches 120,000120,000 as tt \to \infty.
  • Rapid growth around t3.24t \approx 3.24, when f(t)=60,000f(t) = 60,000.

I can create a sketch of the graph if you'd like. Let me know if you need a plotted graph.


Follow-Up Questions:

  1. How does the value of kk influence the speed of infection spread in the model?
  2. What happens to the function f(t)f(t) as tt \to \infty?
  3. How is the logistic function used in other real-world scenarios beyond epidemiology?
  4. What does the parameter AA represent in terms of the infection spread?
  5. How would the model change if the population size was larger or smaller?

Tip:

In logistic models, the growth rate kk determines how quickly the population approaches its carrying capacity. A higher kk results in faster growth.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logistic Growth Model
Exponential Functions
Algebraic Equation Solving

Formulas

Logistic Growth Function: f(t) = M / (1 + A * e^(-k*t))
Natural Logarithm: ln(x)

Theorems

Logistic Growth Theorem

Suitable Grade Level

Undergraduate - Applied Mathematics or Epidemiology