Math Problem Statement

Another linear transformation

Solution

To solve this problem, we need to compose the linear transformations T1T_1 and T2T_2.

Given: T1:R2R2 and T2:R2R2T_1: \mathbb{R}^2 \to \mathbb{R}^2 \text{ and } T_2: \mathbb{R}^2 \to \mathbb{R}^2

Defined as follows: T1([x1x2])=[ax2bx1]T_1 \left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} ax_2 \\ bx_1 \end{bmatrix} T2([x1x2])=[cx1dx2]T_2 \left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} cx_1 \\ dx_2 \end{bmatrix}

We need to find: (T2T1)([xy])(T_2 \circ T_1) \left( \begin{bmatrix} x \\ y \end{bmatrix} \right)

Step-by-Step Solution

  1. Apply T1T_1 to [xy]\begin{bmatrix} x \\ y \end{bmatrix}:

T1([xy])=[aybx]T_1 \left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} ay \\ bx \end{bmatrix}

  1. Apply T2T_2 to the result of T1T_1:

T2([aybx])=[c(ay)d(bx)]=[caydbx]T_2 \left( \begin{bmatrix} ay \\ bx \end{bmatrix} \right) = \begin{bmatrix} c(ay) \\ d(bx) \end{bmatrix} = \begin{bmatrix} cay \\ dbx \end{bmatrix}

Thus, the result of the composition (T2T1)([xy])(T_2 \circ T_1) \left( \begin{bmatrix} x \\ y \end{bmatrix} \right) is:

[caydbx]\begin{bmatrix} cay \\ dbx \end{bmatrix}

Would you like more details or have any questions about this solution?

Here are some additional related questions:

  1. How do you determine the matrix representation of a linear transformation?
  2. Can you find the matrix representation of T1T_1 and T2T_2 in this problem?
  3. What properties do linear transformations preserve?
  4. How do you compose multiple linear transformations?
  5. What is the kernel of a linear transformation?
  6. How do you determine if a linear transformation is invertible?
  7. What is the significance of eigenvalues and eigenvectors in linear transformations?
  8. How can you use linear transformations to solve systems of linear equations?

Tip: When working with compositions of linear transformations, always apply the transformations step-by-step to ensure accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Transformations
Matrix Representation
Composition of Functions

Formulas

-

Theorems

-

Suitable Grade Level

Advanced High School