Math Problem Statement

Answer

Given T(x, y, z) = (3x - z, 5x - y + z) and S(x, y) = (2x - y, x - 3y, -3x + y), find the inverse of T ∘ S in matrix form.

Solution

To solve this problem, we need to find the inverse of the composition TST \circ S in matrix form, where:

  • T(x,y,z)=(3xz,5xy+z)T(x, y, z) = (3x - z, 5x - y + z)
  • S(x,y)=(2xy,x3y,3x+y)S(x, y) = (2x - y, x - 3y, -3x + y)

Step 1: Represent TT and SS as matrices

Matrix for S(x,y)S(x, y)

The transformation S(x,y)=(2xy,x3y,3x+y)S(x, y) = (2x - y, x - 3y, -3x + y) can be written as a matrix multiplying the vector (xy)\begin{pmatrix} x \\ y \end{pmatrix}:

S(x,y)=(211331)(xy)S(x, y) = \begin{pmatrix} 2 & -1 \\ 1 & -3 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}

So, the matrix representation of SS is:

S=(211331)S = \begin{pmatrix} 2 & -1 \\ 1 & -3 \\ -3 & 1 \end{pmatrix}

Matrix for T(x,y,z)T(x, y, z)

The transformation T(x,y,z)=(3xz,5xy+z)T(x, y, z) = (3x - z, 5x - y + z) can be written as:

T(x,y,z)=(301511)(xyz)T(x, y, z) = \begin{pmatrix} 3 & 0 & -1 \\ 5 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}

So, the matrix representation of TT is:

T=(301511)T = \begin{pmatrix} 3 & 0 & -1 \\ 5 & -1 & 1 \end{pmatrix}

Step 2: Multiply TT and SS

Now, we compute the composition TST \circ S, which is the matrix multiplication T×ST \times S:

TS=(301511)×(211331)T \circ S = \begin{pmatrix} 3 & 0 & -1 \\ 5 & -1 & 1 \end{pmatrix} \times \begin{pmatrix} 2 & -1 \\ 1 & -3 \\ -3 & 1 \end{pmatrix}

Carrying out the matrix multiplication:

TS=((3)(2)+(0)(1)+(1)(3)(3)(1)+(0)(3)+(1)(1)(5)(2)+(1)(1)+(1)(3)(5)(1)+(1)(3)+(1)(1))T \circ S = \begin{pmatrix} (3)(2) + (0)(1) + (-1)(-3) & (3)(-1) + (0)(-3) + (-1)(1) \\ (5)(2) + (-1)(1) + (1)(-3) & (5)(-1) + (-1)(-3) + (1)(1) \end{pmatrix}

Simplifying the elements:

TS=(6+33110135+3+1)=(9461)T \circ S = \begin{pmatrix} 6 + 3 & -3 - 1 \\ 10 - 1 - 3 & -5 + 3 + 1 \end{pmatrix} = \begin{pmatrix} 9 & -4 \\ 6 & -1 \end{pmatrix}

Step 3: Find the inverse of TST \circ S

Now, we need to find the inverse of the matrix (9461)\begin{pmatrix} 9 & -4 \\ 6 & -1 \end{pmatrix}.

The formula for the inverse of a 2×22 \times 2 matrix (abcd)\begin{pmatrix} a & b \\ c & d \end{pmatrix} is:

A1=1adbc(dbca)A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}

For the matrix (9461)\begin{pmatrix} 9 & -4 \\ 6 & -1 \end{pmatrix}:

  • a=9a = 9, b=4b = -4, c=6c = 6, d=1d = -1
  • Determinant det(A)=(9)(1)(6)(4)=9+24=15\text{det}(A) = (9)(-1) - (6)(-4) = -9 + 24 = 15

So, the inverse is:

A1=115(1469)A^{-1} = \frac{1}{15} \begin{pmatrix} -1 & 4 \\ -6 & 9 \end{pmatrix}

A1=(115415615915)=(1154152535)A^{-1} = \begin{pmatrix} \frac{-1}{15} & \frac{4}{15} \\ \frac{-6}{15} & \frac{9}{15} \end{pmatrix} = \begin{pmatrix} \frac{-1}{15} & \frac{4}{15} \\ \frac{-2}{5} & \frac{3}{5} \end{pmatrix}

Step 4: Compare with the options

This matches option C, which is:

(1154152535)\begin{pmatrix} \frac{-1}{15} & \frac{4}{15} \\ \frac{-2}{5} & \frac{3}{5} \end{pmatrix}

Thus, the correct answer is C.


Would you like more details or have any questions? Here are some related questions to extend this:

  1. How do you find the inverse of a 3x3 matrix?
  2. What is the significance of the determinant when calculating matrix inverses?
  3. Can the composition of transformations be interpreted geometrically?
  4. What happens if the determinant of a transformation matrix is zero?
  5. How do transformations apply in practical fields such as computer graphics?

Tip: Always check if the determinant is non-zero before computing the inverse of a matrix.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Inversion
Transformations

Formulas

Matrix multiplication
Inverse of a 2x2 matrix

Theorems

Properties of matrix multiplication
Inverse of matrices

Suitable Grade Level

Undergraduate level - Linear Algebra