Math Problem Statement

Please help me solve this linear transformation.

Solution

To solve the given problem, we need to follow these steps:

  1. Apply the transformation T1T_1 to the polynomial 3x2+4x+5-3x^2 + 4x + 5.
  2. Use the result from step 1 as input for the transformation T2T_2.

Given: T1(ax2+bx+c)=[a+bbc]T_1(ax^2 + bx + c) = \begin{bmatrix} a + b \\ b - c \end{bmatrix} T2([x1x2])=[4x18x19x25x2]T_2 \left( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} 4x_1 & -8x_1 \\ 9x_2 & 5x_2 \end{bmatrix}

First, we identify aa, bb, and cc in the polynomial 3x2+4x+5-3x^2 + 4x + 5:

a=3,b=4,c=5a = -3, \quad b = 4, \quad c = 5

Step 1: Apply T1T_1

Using the definition of T1T_1:

T1(3x2+4x+5)=[3+445]=[11]T_1(-3x^2 + 4x + 5) = \begin{bmatrix} -3 + 4 \\ 4 - 5 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}

Step 2: Apply T2T_2

Now, we take the result from T1T_1, which is [11]\begin{bmatrix} 1 \\ -1 \end{bmatrix}, and apply T2T_2:

T2([11])=[41819(1)5(1)]=[4895]T_2 \left( \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right) = \begin{bmatrix} 4 \cdot 1 & -8 \cdot 1 \\ 9 \cdot (-1) & 5 \cdot (-1) \end{bmatrix} = \begin{bmatrix} 4 & -8 \\ -9 & -5 \end{bmatrix}

Thus, the result of the linear transformation (T2T1)(3x2+4x+5)(T_2 \circ T_1)(-3x^2 + 4x + 5) is:

[4895]\begin{bmatrix} 4 & -8 \\ -9 & -5 \end{bmatrix}

Would you like more details or have any questions about this solution?

Here are some additional related questions:

  1. How do linear transformations affect the basis of a vector space?
  2. Can you find the matrix representation of T1T_1 and T2T_2?
  3. What properties do linear transformations preserve?
  4. How do you compose multiple linear transformations?
  5. How do linear transformations relate to systems of linear equations?
  6. What is the kernel of a linear transformation?
  7. How do you determine if a linear transformation is invertible?
  8. What is the significance of eigenvalues and eigenvectors in linear transformations?

Tip: When working with linear transformations, always check the definitions and properties to ensure the correct application of each transformation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Transformations
Matrix Operations

Formulas

Matrix multiplication

Theorems

Composition of linear transformations

Suitable Grade Level

Advanced High School