Math Problem Statement

If T: R^2 -> R^2 is a linear transformation such that T([1,1]) = [2,7] and T([1,-2]) = [-1,-5], find T([0,9]).

Solution

The problem describes a linear transformation T:R2R2T : \mathbb{R}^2 \to \mathbb{R}^2 and provides two specific mappings of vectors:

T([11])=[27]andT([12])=[15].T \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 7 \end{bmatrix} \quad \text{and} \quad T \left( \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right) = \begin{bmatrix} -1 \\ -5 \end{bmatrix}.

We are asked to find T([09])T \left( \begin{bmatrix} 0 \\ 9 \end{bmatrix} \right).

Solution Outline:

Since the transformation is linear, T(v)=AvT(\mathbf{v}) = A\mathbf{v}, where AA is a 2×22 \times 2 matrix. To find AA, use the given vectors:

  1. Let A=[abcd]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.

  2. From the first equation, T([11])=[27]T \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 7 \end{bmatrix}, we get: A[11]=[a+bc+d]=[27].A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a + b \\ c + d \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}. This gives us the system: a+b=2andc+d=7.a + b = 2 \quad \text{and} \quad c + d = 7.

  3. From the second equation, T([12])=[15]T \left( \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right) = \begin{bmatrix} -1 \\ -5 \end{bmatrix}, we get: A[12]=[a2bc2d]=[15].A \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} a - 2b \\ c - 2d \end{bmatrix} = \begin{bmatrix} -1 \\ -5 \end{bmatrix}. This gives us another system: a2b=1andc2d=5.a - 2b = -1 \quad \text{and} \quad c - 2d = -5.

Solving the system:

  • From a+b=2a + b = 2 and a2b=1a - 2b = -1, solve for aa and bb:

    1. Add the two equations: (a+b)+(a2b)=2+(1)2ab=1.(a + b) + (a - 2b) = 2 + (-1) \quad \Rightarrow \quad 2a - b = 1.
    2. Subtract the second from the first: 3b=3b=1.3b = 3 \quad \Rightarrow \quad b = 1.
    3. Plug b=1b = 1 into a+b=2a + b = 2: a+1=2a=1.a + 1 = 2 \quad \Rightarrow \quad a = 1.
  • From c+d=7c + d = 7 and c2d=5c - 2d = -5, solve for cc and dd:

    1. Add the two equations: (c+d)+(c2d)=7+(5)2cd=2.(c + d) + (c - 2d) = 7 + (-5) \quad \Rightarrow \quad 2c - d = 2.
    2. Subtract the second from the first: 3d=12d=4.3d = 12 \quad \Rightarrow \quad d = 4.
    3. Plug d=4d = 4 into c+d=7c + d = 7: c+4=7c=3.c + 4 = 7 \quad \Rightarrow \quad c = 3.

Thus, the transformation matrix AA is: A=[1134].A = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}.

Finding T([09])T \left( \begin{bmatrix} 0 \\ 9 \end{bmatrix} \right):

Now that we have AA, we can calculate T([09])T \left( \begin{bmatrix} 0 \\ 9 \end{bmatrix} \right):

T([09])=A[09]=[1134][09]=[1(0)+1(9)3(0)+4(9)]=[936].T \left( \begin{bmatrix} 0 \\ 9 \end{bmatrix} \right) = A \begin{bmatrix} 0 \\ 9 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 9 \end{bmatrix} = \begin{bmatrix} 1(0) + 1(9) \\ 3(0) + 4(9) \end{bmatrix} = \begin{bmatrix} 9 \\ 36 \end{bmatrix}.

Thus, T([09])=[936]T \left( \begin{bmatrix} 0 \\ 9 \end{bmatrix} \right) = \begin{bmatrix} 9 \\ 36 \end{bmatrix}.

Would you like more details on this, or do you have any questions?


Here are 5 related questions to explore:

  1. How can you confirm that a matrix represents a linear transformation?
  2. What other properties can we deduce from knowing the matrix of a linear transformation?
  3. How do eigenvalues relate to linear transformations in two dimensions?
  4. Can linear transformations always be represented by matrices?
  5. How would this problem change if TT were a transformation in R3\mathbb{R}^3?

Tip: When solving systems of linear equations, combining equations (addition or subtraction) is often the quickest way to isolate variables.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Transformations
Linear Transformations

Formulas

T(v) = A * v, where A is the transformation matrix
Matrix multiplication: A * [v1, v2]
Solving systems of linear equations

Theorems

Linear Transformation Theorem

Suitable Grade Level

Undergraduate Level