Math Problem Statement
At a music festival, souvenir hats, t-shirts, and sweatshirts are sold. The cost of three hats, two t-shirts, and one sweatshirt is $140. Two hats, two t-shirts, and two sweatshirts cost $170. And the cost of one hat, three t-shirts, and two sweatshirts is $180. Find the prices of each individual item. Solve using inverse matrix.
Solution
To solve this problem using the inverse matrix method, we start by setting up a system of linear equations based on the given information.
Let's denote:
- as the price of one hat
- as the price of one t-shirt
- as the price of one sweatshirt
The given information translates into the following system of equations:
3x + 2y + z = 140 \\ 2x + 2y + 2z = 170 \\ x + 3y + 2z = 180 \end{cases}$$ We can write this system in matrix form $$AX = B$$, where $$A$$ is the coefficient matrix, $$X$$ is the column matrix of the variables, and $$B$$ is the column matrix of the constants. Specifically: $$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 2 \\ 1 & 3 & 2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 140 \\ 170 \\ 180 \end{pmatrix}$$ To solve for $$X$$, we need to find the inverse of matrix $$A$$, denoted as $$A^{-1}$$, and then multiply it by matrix $$B$$: $$X = A^{-1} B$$ First, we compute the inverse of $$A$$. The inverse of a 3x3 matrix $$A$$ is given by: $$A^{-1} = \frac{1}{\det(A)} \text{adj}(A)$$ where $$\det(A)$$ is the determinant of $$A$$ and $$\text{adj}(A)$$ is the adjugate of $$A$$. ### Step 1: Compute the Determinant of $$A$$ $$\det(A) = 3 \begin{vmatrix} 2 & 2 \\ 3 & 2 \end{vmatrix} - 2 \begin{vmatrix} 2 & 2 \\ 1 & 2 \end{vmatrix} + 1 \begin{vmatrix} 2 & 2 \\ 1 & 3 \end{vmatrix}$$ $$\det(A) = 3 (2 \cdot 2 - 2 \cdot 3) - 2 (2 \cdot 2 - 2 \cdot 1) + 1 (2 \cdot 3 - 2 \cdot 1)$$ $$\det(A) = 3 (4 - 6) - 2 (4 - 2) + 1 (6 - 2)$$ $$\det(A) = 3 (-2) - 2 (2) + 1 (4)$$ $$\det(A) = -6 - 4 + 4 = -6$$ ### Step 2: Compute the Adjugate of $$A$$ The adjugate of $$A$$, $$\text{adj}(A)$$, is the transpose of the cofactor matrix of $$A$$. $$\text{adj}(A) = \begin{pmatrix} 2 & -2 & 2 \\ 4 & -5 & 5 \\ 2 & -4 & 4 \end{pmatrix}$$ ### Step 3: Compute $$A^{-1}$$ $$A^{-1} = \frac{1}{\det(A)} \text{adj}(A) = \frac{1}{-6} \begin{pmatrix} 2 & -2 & 2 \\ 4 & -5 & 5 \\ 2 & -4 & 4 \end{pmatrix}$$ $$A^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ -\frac{2}{3} & \frac{5}{6} & -\frac{5}{6} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{pmatrix}$$ ### Step 4: Multiply $$A^{-1}$$ by $$B$$ $$X = A^{-1} B = \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ -\frac{2}{3} & \frac{5}{6} & -\frac{5}{6} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} 140 \\ 170 \\ 180 \end{pmatrix}$$ $$X = \begin{pmatrix} -\frac{1}{3} \cdot 140 + \frac{1}{3} \cdot 170 - \frac{1}{3} \cdot 180 \\ -\frac{2}{3} \cdot 140 + \frac{5}{6} \cdot 170 - \frac{5}{6} \cdot 180 \\ -\frac{1}{3} \cdot 140 + \frac{2}{3} \cdot 170 - \frac{2}{3} \cdot 180 \end{pmatrix}$$ $$X = \begin{pmatrix} -\frac{140}{3} + \frac{170}{3} - \frac{180}{3} \\ -\frac{280}{3} + \frac{850}{6} - \frac{900}{6} \\ -\frac{140}{3} + \frac{340}{3} - \frac{360}{3} \end{pmatrix}$$ $$X = \begin{pmatrix} -46.67 + 56.67 - 60 \\ -93.33 + 141.67 - 150 \\ -46.67 + 113.33 - 120 \end{pmatrix}$$ $$X = \begin{pmatrix} -50 \\ -101.67 \\ -53.33 \end{pmatrix}$$ Thus, the prices of the hat, t-shirt, and sweatshirt are $$\boxed{-50}$$, $$\boxed{-101.67}$$, and $$\boxed{-53.33}$$ respectively. The negative values indicate a calculation error; let's recompute by ensuring the arithmetic is correctly applied.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Systems of Linear Equations
Matrix Operations
Inverse Matrices
Formulas
Matrix multiplication
Determinant of a 3x3 matrix
Inverse of a 3x3 matrix
Theorems
-
Suitable Grade Level
Advanced High School
Related Recommendation
Solving Linear Systems with Inverse Matrix Method
Solving a System of Linear Equations Using Matrices
Solve Linear Equations Using Matrices: Cost of T-shirts and Notebooks
Solving a System of Linear Equations Using Inverse Matrices: 4x1+x2-5x3=16, x1 +2x2-4x3=6, -2x2-x3=6
Solving Systems of Equations using Inverse Matrices