Math Problem Statement
Use the substitution x=3tant, −π2≤t≤π2x=3tant, −π2≤t≤π2 to simplify the following integral:
∫19+x2dx∫19+x2dx
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Integral Calculus
Trigonometric Substitution
Inverse Trigonometric Functions
Formulas
x = 3tan t
dx = 3sec^2 t dt
1 + tan^2 t = sec^2 t
∫ 1/(a^2 + x^2) dx = (1/a) * tan^(-1)(x/a) + C
Theorems
Trigonometric Substitution
Inverse Tangent Function
Suitable Grade Level
Grades 11-12, College
Related Recommendation
Evaluate the Integral Using Trigonometric Substitution: \int \frac{1}{(81 + x^2)^{3/2}} \ dx
Integral of 1/(x²√(x²−9)) Using Trigonometric Substitution - Step-by-Step Solution
Integrating 1/(1+x^2) Using Trigonometric Substitution
Solving Integral of x^3 / √(9 + x^2) using Trigonometric Substitution
Integral of 5/(1 + 9x^2): Step-by-Step Solution