Math Problem Statement

Use the substitution  x=3tant,  −π2≤t≤π2x=3tan⁡t,  −π2≤t≤π2  to simplify the following integral:

∫19+x2dx∫19+x2dx  

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution
Inverse Trigonometric Functions

Formulas

x = 3tan t
dx = 3sec^2 t dt
1 + tan^2 t = sec^2 t
∫ 1/(a^2 + x^2) dx = (1/a) * tan^(-1)(x/a) + C

Theorems

Trigonometric Substitution
Inverse Tangent Function

Suitable Grade Level

Grades 11-12, College