Math Problem Statement

Use the substitution  x=3tant,  −π2≤t≤π2x=3tan⁡t,  −π2≤t≤π2  to simplify the following integral:

∫19+x2dx∫19+x2dx  

Solution

We are given the integral:

19+x2dx\int \frac{1}{9 + x^2} \, dx

and the substitution x=3tantx = 3\tan t, with π2tπ2-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}.

Step-by-step solution:

  1. Differentiate the substitution x=3tantx = 3\tan t: dx=3sec2tdtdx = 3\sec^2 t \, dt

  2. Substitute x=3tantx = 3\tan t and dx=3sec2tdtdx = 3\sec^2 t \, dt into the integral: 19+x2dx=19+(3tant)23sec2tdt\int \frac{1}{9 + x^2} \, dx = \int \frac{1}{9 + (3\tan t)^2} \cdot 3\sec^2 t \, dt

  3. Simplify the expression 9+(3tant)29 + (3\tan t)^2: 9+(3tant)2=9+9tan2t=9(1+tan2t)9 + (3\tan t)^2 = 9 + 9\tan^2 t = 9(1 + \tan^2 t) Using the trigonometric identity 1+tan2t=sec2t1 + \tan^2 t = \sec^2 t, we get: 9(1+tan2t)=9sec2t9(1 + \tan^2 t) = 9\sec^2 t

  4. Substitute this back into the integral: 19sec2t3sec2tdt=3sec2t9sec2tdt=13dt\int \frac{1}{9\sec^2 t} \cdot 3\sec^2 t \, dt = \int \frac{3\sec^2 t}{9\sec^2 t} \, dt = \int \frac{1}{3} \, dt

  5. Integrate with respect to tt: 13dt=t3+C\int \frac{1}{3} \, dt = \frac{t}{3} + C

  6. Substitute back tt in terms of xx using the inverse of x=3tantx = 3\tan t, which gives t=tan1(x3)t = \tan^{-1}\left(\frac{x}{3}\right): t3=13tan1(x3)\frac{t}{3} = \frac{1}{3} \tan^{-1} \left( \frac{x}{3} \right)

Thus, the simplified integral is:

19+x2dx=13tan1(x3)+C\int \frac{1}{9 + x^2} \, dx = \frac{1}{3} \tan^{-1} \left( \frac{x}{3} \right) + C

Would you like further details or clarification?

Here are 5 questions related to this process:

  1. How does substitution simplify integrals involving squares of variables?
  2. What is the significance of using tan1\tan^{-1} in integrals?
  3. Why do we restrict the bounds for tt to π2tπ2-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}?
  4. Can we use other trigonometric substitutions for similar integrals?
  5. How do we handle definite integrals when performing substitutions?

Tip: Always check for trigonometric identities to simplify expressions when using substitutions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution
Inverse Trigonometric Functions

Formulas

x = 3tan t
dx = 3sec^2 t dt
1 + tan^2 t = sec^2 t
∫ 1/(a^2 + x^2) dx = (1/a) * tan^(-1)(x/a) + C

Theorems

Trigonometric Substitution
Inverse Tangent Function

Suitable Grade Level

Grades 11-12, College