Math Problem Statement

what is the integral of 5/1+9x^2 dx

Solution

To find the integral

51+9x2dx\int \frac{5}{1 + 9x^2} \, dx

we can use a substitution to simplify it. The integral resembles the form of the standard integral:

1a2+u2du=1aarctan(ua)+C\int \frac{1}{a^2 + u^2} \, du = \frac{1}{a} \arctan \left( \frac{u}{a} \right) + C

Solution

  1. Rewrite the integral: 51+(3x)2dx\int \frac{5}{1 + (3x)^2} \, dx

  2. Let u=3xu = 3x, then du=3dxdu = 3 \, dx or dx=du3dx = \frac{du}{3}.

  3. Substitute uu and dxdx into the integral: 51+u2du3=5311+u2du\int \frac{5}{1 + u^2} \cdot \frac{du}{3} = \frac{5}{3} \int \frac{1}{1 + u^2} \, du

  4. Now we can integrate: 53arctan(u)+C\frac{5}{3} \arctan(u) + C

  5. Substitute back u=3xu = 3x: 53arctan(3x)+C\frac{5}{3} \arctan(3x) + C

Final Answer

51+9x2dx=53arctan(3x)+C\int \frac{5}{1 + 9x^2} \, dx = \frac{5}{3} \arctan(3x) + C

Would you like a further breakdown of this solution, or do you have any questions?


Here are some related questions:

  1. What is the integral of 11+9x2dx\frac{1}{1+9x^2} \, dx?
  2. How do you integrate 51+4x2dx\int \frac{5}{1+4x^2} \, dx using a similar method?
  3. How does the substitution method work in integral calculus?
  4. How does the arctan function relate to integrals of the form 1a2+u2du\int \frac{1}{a^2 + u^2} \, du?
  5. How do you find integrals involving a2+u2\sqrt{a^2 + u^2}?

Tip: Substitution is useful when you recognize a pattern involving a basic function and its derivative in the integrand.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Trigonometric Substitution

Formulas

∫ (1 / (a^2 + u^2)) du = (1/a) arctan(u/a) + C

Theorems

Integration of Rational Functions
Arctangent Integral Formula

Suitable Grade Level

Grades 11-12