Math Problem Statement

Evaluate the integral using a trigonometric substitution. State what substitution you are using, and (13pts) show all steps and substitutions. ∫ 1/ 𝑥^2 √(𝑥^2 − 9) 𝑑𝑥

Solution

We are tasked with evaluating the integral:

I=1x2x29dxI = \int \frac{1}{x^2 \sqrt{x^2 - 9}} \, dx

Step 1: Trigonometric Substitution

Since the integrand involves x29\sqrt{x^2 - 9}, which suggests a form similar to the Pythagorean identity, we can use a hyperbolic substitution (or a trigonometric substitution). The typical substitution for expressions of the form x2a2\sqrt{x^2 - a^2} is:

x=asec(θ)x = a \sec(\theta)

In this case, we have a2=9a^2 = 9, so a=3a = 3. Thus, the substitution is:

x=3sec(θ)x = 3 \sec(\theta)

Step 2: Differentiating and Substituting

We now differentiate x=3sec(θ)x = 3 \sec(\theta) with respect to θ\theta:

dx=3sec(θ)tan(θ)dθdx = 3 \sec(\theta) \tan(\theta) \, d\theta

Substitute x=3sec(θ)x = 3 \sec(\theta) and dx=3sec(θ)tan(θ)dθdx = 3 \sec(\theta) \tan(\theta) \, d\theta into the integral.

Also, substitute x29\sqrt{x^2 - 9}:

x29=9sec2(θ)9=9(sec2(θ)1)=9tan2(θ)=3tan(θ)\sqrt{x^2 - 9} = \sqrt{9 \sec^2(\theta) - 9} = \sqrt{9 (\sec^2(\theta) - 1)} = \sqrt{9 \tan^2(\theta)} = 3 \tan(\theta)

Step 3: Substitute into the Integral

Now substitute all the terms into the original integral:

I=1(3sec(θ))23tan(θ)3sec(θ)tan(θ)dθI = \int \frac{1}{(3 \sec(\theta))^2 \cdot 3 \tan(\theta)} \cdot 3 \sec(\theta) \tan(\theta) \, d\theta

Simplify the expression step-by-step:

I=19sec2(θ)3tan(θ)3sec(θ)tan(θ)dθI = \int \frac{1}{9 \sec^2(\theta) \cdot 3 \tan(\theta)} \cdot 3 \sec(\theta) \tan(\theta) \, d\theta

I=19sec(θ)tan(θ)tan(θ)dθI = \int \frac{1}{9 \sec(\theta) \cdot \tan(\theta)} \cdot \tan(\theta) \, d\theta

The tan(θ)\tan(\theta) terms cancel out:

I=19sec(θ)dθI = \int \frac{1}{9 \sec(\theta)} \, d\theta

Now simplify the integrand:

I=19cos(θ)dθI = \frac{1}{9} \int \cos(\theta) \, d\theta

Step 4: Integration

Now, integrate cos(θ)\cos(\theta):

I=19sin(θ)+CI = \frac{1}{9} \sin(\theta) + C

Step 5: Back-Substitute

We need to convert sin(θ)\sin(\theta) back into terms of xx. From the substitution x=3sec(θ)x = 3 \sec(\theta), we can use the identity sec2(θ)tan2(θ)=1\sec^2(\theta) - \tan^2(\theta) = 1, or simply recall that:

sin(θ)=x29x\sin(\theta) = \frac{\sqrt{x^2 - 9}}{x}

Thus, we can write:

I=19x29x+CI = \frac{1}{9} \cdot \frac{\sqrt{x^2 - 9}}{x} + C

Final Answer:

I=x299x+CI = \frac{\sqrt{x^2 - 9}}{9x} + C


Would you like me to explain any part of the process in more detail? Here are a few related questions you may find helpful:

  1. What other types of substitutions can be used to evaluate integrals involving x2a2\sqrt{x^2 - a^2}?
  2. How do trigonometric identities play a role in simplifying integrals using substitution?
  3. What is the significance of the hyperbolic identity sec2(θ)1=tan2(θ)\sec^2(\theta) - 1 = \tan^2(\theta) in substitution problems?
  4. How can you verify the correctness of your result by differentiating it?
  5. How would the result change if the original integral had a different constant (for example, x216x^2 - 16 instead of x29x^2 - 9)?

Tip: For integrals involving x2a2\sqrt{x^2 - a^2}, always check for opportunities to use trigonometric or hyperbolic substitutions to simplify the expression before integrating!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution
Definite and Indefinite Integrals

Formulas

Trigonometric Substitution: x = a sec(θ)
Differentiation: dx = a sec(θ) tan(θ) dθ
Pythagorean Identity: sec^2(θ) - 1 = tan^2(θ)
Integral of cos(θ): ∫ cos(θ) dθ = sin(θ) + C

Theorems

Pythagorean Theorem
Basic Trigonometric Identities
Integration by Substitution

Suitable Grade Level

Undergraduate Calculus (College Level)