Math Problem Statement
comment simplifier le produit n=0∏n−1 sin(2πt/Tn-1) avec Tn est une suite arithmetique Tn= 30+36n et ∏ commence de 0 jusqu'à n-1. la simplification avec la forme complexe de sinus ou serie de fourrier ou autre expression.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Series and Sequences
Complex Numbers
Fourier Series
Formulas
Complex form of sine: $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$
Theorems
-
Suitable Grade Level
Advanced Mathematics
Related Recommendation
Simplification of Product Involving Trigonometric Functions with Arithmetic Sequence
Simplify Infinite Product ∏ sin(2iπt/Tn) with Tn = 30 + 36n
Calculate Products of sin(2*pi/Tn) for Arithmetic Sequence Tn = 30 + 36n
Sinusoidal Function Summation: Modifying Tn in Python
Simplifying Product of Sine Functions: ∏_{k=0}^{n+1} sin(2πk/n)