Math Problem Statement

Докажи что если limnan=+limn+bn=B\lim_{n\to\infty}a_{n}=+\infty\text{, }\lim_{n\to+\infty}b_{n}=Bто limn+(an+bn)=+\lim_{n\to+\infty}\left(a_{n}+b_{n}\right)=+\infty

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits of sequences
Infinity in sequences
Convergence of sequences
Addition of limits

Formulas

Limit definition: $$ \lim_{n \to \infty} a_n = +\infty $$
Limit definition: $$ \lim_{n \to \infty} b_n = B $$
Addition of limits: $$ \lim_{n \to \infty} (a_n + b_n) = +\infty $$

Theorems

Limit laws for sequences
Properties of infinite limits
Behavior of sequences involving infinity

Suitable Grade Level

Undergraduate Mathematics