Math Problem Statement

Jawablah soal nomor 2 bagian a dengan penyelesaian dan hasil nya

Jawablah soal nomor 2 bagian a dengan penyelesaian dan hasil nya

Solution

The second question asks to determine the following for part (a):

Given functions f(x)=x23f(x) = x^2 - 3 and g(x)=x2+3x+5g(x) = x^2 + 3x + 5, find f(x)+g(x)f(x) + g(x).

Solution:

We have: f(x)=x23f(x) = x^2 - 3 g(x)=x2+3x+5g(x) = x^2 + 3x + 5

Now, add f(x)f(x) and g(x)g(x): f(x)+g(x)=(x23)+(x2+3x+5)f(x) + g(x) = (x^2 - 3) + (x^2 + 3x + 5) f(x)+g(x)=x2+x2+3x3+5f(x) + g(x) = x^2 + x^2 + 3x - 3 + 5 f(x)+g(x)=2x2+3x+2f(x) + g(x) = 2x^2 + 3x + 2

Final Answer:

f(x)+g(x)=2x2+3x+2f(x) + g(x) = 2x^2 + 3x + 2

Would you like further details or have any questions?

Here are 5 related questions to practice:

  1. Calculate f(x)g(x)f(x) - g(x) using the same functions.
  2. Multiply f(x)×g(x)f(x) \times g(x) and simplify the result.
  3. If f(x)=x23f(x) = x^2 - 3 and h(x)=2x34x+1h(x) = 2x^3 - 4x + 1, find f(x)+h(x)f(x) + h(x).
  4. Solve for xx when f(x)+g(x)=0f(x) + g(x) = 0.
  5. Find the value of f(x)f(x) and g(x)g(x) at x=2x = 2.

Tip: Always simplify your functions step by step to avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Functions

Formulas

f(x) + g(x) = (x^2 - 3) + (x^2 + 3x + 5)

Theorems

Polynomial Addition

Suitable Grade Level

Grades 10-12