Math Problem Statement

  1. Show that A* B ne B* A, when A and B are unless A = B

Solution

We are tasked with showing that for two matrices AA and BB, in general, A×BB×AA \times B \neq B \times A unless A=BA = B. This is a property of non-commutative multiplication for matrices.

General Idea:

In matrix multiplication, the order in which matrices are multiplied matters, meaning that the product of A×BA \times B is generally not the same as B×AB \times A. This is because the entries of the resulting matrices depend on the specific rows and columns involved in the multiplication, which differ when the order is swapped.

Proof by Example:

Let’s illustrate this with an example to show that A×BB×AA \times B \neq B \times A unless A=BA = B.

Consider two matrices AA and BB as follows:

A=(1234),B=(5678)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}

Step 1: Compute A×BA \times B

A×B=(1234)×(5678)A \times B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \times \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}

= \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$ #### Step 2: Compute $$B \times A$$ $$B \times A = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$ $$= \begin{pmatrix} (5 \cdot 1 + 6 \cdot 3) & (5 \cdot 2 + 6 \cdot 4) \\ (7 \cdot 1 + 8 \cdot 3) & (7 \cdot 2 + 8 \cdot 4) \end{pmatrix} = \begin{pmatrix} 23 & 34 \\ 31 & 46 \end{pmatrix}$$ #### Step 3: Compare $$A \times B$$ and $$B \times A$$ We can see that: $$A \times B = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}, \quad B \times A = \begin{pmatrix} 23 & 34 \\ 31 & 46 \end{pmatrix}$$ Clearly, $$A \times B \neq B \times A$$. Hence, the product of matrices is generally not commutative. ### Special Case: $$A = B$$ Now, if $$A = B$$, then clearly: $$A \times B = B \times A = A \times A$$ Thus, in the specific case where $$A = B$$, the products are equal. ### Conclusion: In general, $$A \times B \neq B \times A$$ for matrices unless

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Non-Commutativity in Linear Algebra

Formulas

A × B ≠ B × A unless A = B
Matrix multiplication formula: (A × B)_{ij} = Σ(A_{ik} * B_{kj})

Theorems

Non-Commutative Property of Matrix Multiplication

Suitable Grade Level

Grades 10-12